Skip to main content
Log in

Simulation of the grain size effect in gas-sensitive SnO2 thin films using the oxygen vacancy gradient distribution model

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The model of gradient-distributed oxygen vacancies is utilized in simulating the grain size effects of gas-sensitive SnO2 thin films. The distribution profile of oxygen vacancies has a grain size effect and the profile gradient correlates positively with the radius of the grains. The simulation results show that the grain size is a fundamental factor dominating the gas-sensing properties of thin films. The potential barrier height and resistivity have significant grain size effects when m is between 0.1 and 0.5 nm-1. The size effects on sensor response to stimulant gases can be enhanced by increasing the value of m or the absolute value of a. Two expressions are used to simulate the grain size effect of the sensor response. The expressions act similarly when a < 0.2. The simplified response provides a neat function to quantitatively explain the sensor performance on gases with low partial pressure. Although the accurate response is complicated, it is applicable to the entire concentration range. A small power-law exponent n is calculated from the accurate response expression when a high gas concentration is employed, illustrating a “saturation effect” of the response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, Anal. Chem. 34, 1502 (1962).

    Article  Google Scholar 

  2. T. Seiyama and S. Kagawa, Anal. Chem. 38, 1069 (1966).

    Article  Google Scholar 

  3. G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank, and J. Morante, Thin Solid Films 436, 119 (2003).

    Article  Google Scholar 

  4. G. Khuspe, S. Navale, D. Bandgar, R. Sakhare, M. Chougule, and V. Patil, Electron. Mater. Lett. 10, 191 (2014).

    Article  Google Scholar 

  5. K. K. Khun, A. Mahajan, and R. Bedi, Electron. Mater. Lett. 7, 303 (2011).

    Article  Google Scholar 

  6. J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, and J. R. Morante, Sensor. Actuat. B-Chem. 140, 337 (2009).

    Article  Google Scholar 

  7. V. Kumar, S. Sen, K. P. Muthe, N. K. Gaur, S. K. Gupta, and J. V. Yakhmi, Sensor. Actuat. B-Chem. 138, 587 (2009).

    Article  Google Scholar 

  8. G. X. Wang, J. S. Park, M. S. Park, and X. L. Gou, Sensor. Actuat. B-Chem. 131, 313 (2008).

    Article  Google Scholar 

  9. H.-S. Hong and C.-O. Park, Electron. Mater. Lett. 1, 11 (2005).

    Google Scholar 

  10. H. G. Moon, H. W. Jang, J.-S. Kim, H.-H. Park, and S.-J. Yoon, Electron. Mater. Lett. 6, 135 (2010).

    Article  Google Scholar 

  11. B.-J. Kim, I.-G. Song, and J.-S. Kim, Electron. Mater. Lett. 10, 509 (2014).

    Article  Google Scholar 

  12. S. R. Morrison, Sensor. Actuat 12, 425 (1987).

    Article  Google Scholar 

  13. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci. 86, 335 (1979).

    Article  Google Scholar 

  14. N. Yamazoe and K. Shimanoe, Sensor. Actuat. B-Chem. 128, 566 (2008).

    Article  Google Scholar 

  15. S. R. Morrison, Sensor. Actuat 11, 283 (1987).

    Article  Google Scholar 

  16. N. Yamazoe and K. Shimanoe, Sensor. Actuat. B-Chem. 138, 100 (2009).

    Article  Google Scholar 

  17. G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, Sensor. Actuat. B-Chem. 80, 125 (2001).

    Article  Google Scholar 

  18. N. Matsunaga, G. Sakai, K. Shimanoe, and N. Yamazoe, Sensor. Actuat. B-Chem. 83, 216 (2002).

    Article  Google Scholar 

  19. J. Liu, S. Gong, J. Xia, L. Quan, H. Liu, and D. Zhou, Sensor. Actuat. B-Chem. 138, 289 (2009).

    Article  Google Scholar 

  20. S. Gong, J. Liu, J. Xia, L. Quan, H. Liu, and D. Zhou, Mater. Sci. Eng. B-Adv. 164, 85 (2009).

    Article  Google Scholar 

  21. N. Yamazoe, K. Shimanoe, and C. Sawada, Thin Solid Films 515, 8302 (2007).

    Article  Google Scholar 

  22. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensor. Actuat. B-Chem. 3, 147 (1991).

    Article  Google Scholar 

  23. J. Liu, S. Gong, L. Quan, Z. Deng, H. Liu, and D. Zhou, Sensor. Actuat. B-Chem. 145, 657 (2010).

    Article  Google Scholar 

  24. J. Liu, S. Gong, Q. Fu, Y. Wang, L. Quan, Z. Deng, B. Chen, and D. Zhou, Sensor. Actuat. B-Chem. 150, 330 (2010).

    Article  Google Scholar 

  25. C. Malagù, V. Guidi, M. Stefancich, M. C. Carotta, and G. Martinelli, J. Appl. Phys. 91, 808 (2002).

    Article  Google Scholar 

  26. C. Fonstad and R. Rediker, J. Appl. Phys. 42, 2911 (1971).

    Article  Google Scholar 

  27. S. Samson and C. Fonstad, J. Appl. Phys. 44, 4618 (1973).

    Article  Google Scholar 

  28. H. Liu, S. Gong, Y. Hu, J. Liu, and D. Zhou, Sensor. Actuat. B-Chem. 140, 190 (2009).

    Article  Google Scholar 

  29. S. M. Sze, Semiconductor Devices: Physics and Technology, John Willey & Sons, Inc. (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhai, Z., Jin, G. et al. Simulation of the grain size effect in gas-sensitive SnO2 thin films using the oxygen vacancy gradient distribution model. Electron. Mater. Lett. 11, 34–40 (2015). https://doi.org/10.1007/s13391-014-4176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4176-5

Keywords

Navigation