Skip to main content
Log in

Microstructural Evolution during Mechanical Milling of Rapidly Solidified Al–14Ni–14Mm1 Alloy Powders

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Microstructural evolution in gas-atomized Al–14 wt%Ni–14wt% Mm alloy powders was studied during mechanical milling. It was noted that the as-solidified particle size of 200 μm increases up to 72 h of milling and, subsequently, there was continuous refinement to 20 μm on milling to 200 h. Two microstructurally different zones—Zone A, which is featureless, and Zone B, which has the structure of the as-solidified powder—were noted. The thickness of the Zone A increased with increasing milling time at the expense of Zone B. Zone A was found to be much harder than Zone B and, consequently, crack formation, eventually leading to microstructural refinement, was observed to start in the relatively weaker Zone B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Suryanarayana, Prog. Mater. Sci. 46, 1–184 (2001).

    Google Scholar 

  2. B. S. Murty and S. Ranganathan, Intern. Mater. Rev. 43, 101–141 (1998).

    Google Scholar 

  3. C. Suryanarayana, Bibliography on Mechanical Alloying and Milling (Cambridge International Science, Cambridge, UK, 1995).

    Google Scholar 

  4. C. Suryanarayana, Met. Mater. 2, 195–209 (1996).

    Google Scholar 

  5. H. H. Liebermann, ed., Rapidly Solidified Alloys: Processes, Structures, Properties, Applications (Marcel Dekker, New York, 1993).

    Google Scholar 

  6. T. R. Anantharaman and C. Suryanarayana, Rapidly Solidi-fied Alloys: A Technological Overview (Trans Tech Publications, Aedermannsdorf, Switzerland, 1987).

  7. L. Lu and M. O. Lai, Mechanical Alloying (Kluwer Acad., Boston, MA, 1998).

    Google Scholar 

  8. S. Ezz, A. Lawley, and M. J. Koczak, in Aluminum Alloys: Their Physical and Mechanical Properties, E. A. Starke, Jr. and T. H. Sanders, Jr., eds. (EMAS, Warley, West Highlands, UK, 1986), vol. II, pp. 1013–1028.

    Google Scholar 

  9. C. Suryanarayana, R. Sundaresan, and F. H. Froes, in Advances in Powder Metallurgy—1989, T. G. Gasbarre and W. F. Jandeska, Jr., compilers (Metal Powder Industries Federation, Princeton, NJ, 1989), vol. 3, pp. 175–188.

    Google Scholar 

  10. K. F. Kobayashi, N. Tachibana, and P. H. Shingu, J. Mater. Sci. 25, 801–804 (1990).

    Google Scholar 

  11. M. L. Ovecoglu, C. Suryanarayana, and W. D. Nix, Metall. Mater. Trans. 27A, 1033–1041 (1996).

    Google Scholar 

  12. Y. H. Kim, A. Inoue, and T. Masumoto, Mater. Trans, JIM 31, 747–749 (1990).

    Google Scholar 

  13. Y. H. Kim, A. Inoue, and T. Masumoto, Mater. Trans. JIM 32, 331–338 (1991).

    Google Scholar 

  14. A. Inoue, K. Ohtera, A. P. Tsai, and T. Masumoto, Jpn. J. Appl. Phys. 27, L280–L282 (1988).

    Google Scholar 

  15. K. Higashi, T. Mukai, S. Tanimura, A. Inoue, and T. Masumoto, Scripta Metall. Mater. 26, 191–196 (1992).

    Google Scholar 

  16. K. Higashi, T. Mukai, A. Uoya, A. Inoue, and T. Masumoto, Mater. Trans. JIM 36, 1467–1475 (1995).

    Google Scholar 

  17. A. Inoue, K. Ohtera, A. P. Tsai, and T. Masumoto, Jpn. J. Appl. Phys. 27, L479–L482 (1988).

    Google Scholar 

  18. H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Scripta Metall. Mater. 25, 1421–1424 (1991).

    Google Scholar 

  19. K. Ohtera, T. Terabayashi, H. Nagahama, A. Inoue, and T. Masumoto, Mater. Trans. JIM 33, 775–781 (1992).

    Google Scholar 

  20. K. Ohtera, K. Kita, H. Nagahama, A. Inoue, and T. Masumoto, Mater. Sci. Eng. A179/180, 592–595 (1994).

    Google Scholar 

  21. G. M. Yoon, Y. H. Kim, B. H. Jung, and I. B. Kim, J. Korean Inst. Metal. Mater 34, 696–702 (1996).

    Google Scholar 

  22. S. J. Hong, T. S. Kim, H. S. Kim, W. T. Kim, and B. S. Chun, Mater. Sci. Eng. A271, 469–476 (1999).

    Google Scholar 

  23. S. J. Hong, C. Suryanarayana, and B. S. Chun, Scripta Mater., in press.

  24. C. Suryanarayana and M. G. Norton, X-Ray Diffraction: A Practical Approach (Plenum, New York, 1998).

    Google Scholar 

  25. G. H. Chen, C. Suryanarayana, and F. H. Froes, Metall. Mater. Trans. 26A, 1379–1387 (1995).

    Google Scholar 

  26. J. S. Benjamin, Sci. Amer. 234, 40–48 (1976).

    Google Scholar 

  27. C. Suryanarayana, in ASM Handbook, Powder Metal Technologies and Applications, (ASM International, Materials Park, OH, 1998), vol. 7, pp. 80–90.

    Google Scholar 

  28. P-Y. Lee, J-L. Yang, and H-M. Lin, J. Mater. Sci. 33, 235–239 (1998).

    Google Scholar 

  29. H. Jones, Mater. Sci. Eng. 5, 1–18 (1969).

    Google Scholar 

  30. H. Biloni and B. Chalmers, Trans. TMS-AIME 233, 373–378 (1965).

    Google Scholar 

  31. C. Suryanarayana, Trans. Indian Inst. Met. 25, 36–42 (1972).

    Google Scholar 

  32. P. Ramachandrarao and T. R. Anantharaman, Trans. TMS-AIME 245, 890–892 (1969).

    Google Scholar 

  33. G. V. S. Sastry and C. Suryanarayana, Mater. Sci. Eng. 47, 193–208 (1981).

    Google Scholar 

  34. C. C. Koch, Nanostructured Mater. 2, 109–129 (1993).

    Google Scholar 

  35. C. C. Koch, Nanostructured Mater. 9, 13–22 (1997).

    Google Scholar 

  36. C. Suryanarayana and F. H. Froes, in Heat Resistant Materials, K. Natesan and D. J. Tillack, eds. (ASM International, Material Park, OH, 1991), pp.25–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Suryanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.J., Kim, T.S., Suryanarayana, C. et al. Microstructural Evolution during Mechanical Milling of Rapidly Solidified Al–14Ni–14Mm1 Alloy Powders. Journal of Materials Synthesis and Processing 9, 39–47 (2001). https://doi.org/10.1023/A:1011386615305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011386615305

Navigation