Skip to main content
Log in

Generic Phenomenological Theory of Vitrification

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In the framework of the thermodynamics of irreversible processes and using a graphical approach based on the simple theorems of differential geometry, a generic phenomenological treatment of the glass transition is developed. A thermodynamic derivation of the basic kinetic condition for vitrification—the Frenkel–Kobeko–Reiner equation—is given in a new generalized form. The temperature course of the thermodynamic functions and the kinetic characteristics of vitrifying systems are constructed using one of the general principles of irreversible thermodynamics. The results thus obtained underline the substantial differences and formal similarities between vitrification, considered as a diffuse kinetic transition and thermodynamic phase transformations. A general reconsideration of the axiomatics of the thermodynamics and kinetics and kinetics of glass transition and relaxation is attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Schilling, R., Mode Coupling Approach to Glass Transition, in Disorder Effects in Relaxation Processes, Richert, R. and Cumen, A.B., Eds., Berlin: Springer, 1990.

    Google Scholar 

  2. Prigogine, I. and Defay, R., Chemical Thermodynamics, London: Longmans, 1954.

    Google Scholar 

  3. Bazarov, I.P., Thermodynamics, New York: McMillan, 1964.

    Google Scholar 

  4. Gutzow, I. and Schmelzer, J., The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization, Berlin: Springer, 1995.

    Google Scholar 

  5. Gutzow, I. and Dobreva, A., Kinetics of Glass Transition, Amorphous Insulators, and Semiconductors, in NATO ASI Series, Thorpe, M. and Mitkova, M., Eds., London: Kluwer, 1996, pp. 21-48.

    Google Scholar 

  6. Gutzow, I., Ilieva, D., Yamakov, V., Babalievski, Ph., and Pye, L.D., in Glass Transition: An Analysis in Terms of Differential Geometry Approach, Schmelzer, J., Ropke, G., and Priezzhev, V.B., Eds., Dubna: JINR Publishing House, 1999, pp. 368-409.

    Google Scholar 

  7. Bartenev, G.M., Structure and Mechanical Properties of Inorganic Glasses, Moscow: Stroiizdat, 1966.

    Google Scholar 

  8. Ritland, H.N., Density Phenomena in the Transformation Region, J. Am. Ceram. Soc., 1954, vol. 37, pp. 370-374.

    Google Scholar 

  9. Vol'kenshtein, M.V. and Ptizyn, O.B., Relaxational Theory of Glass Transition, Zh. Tekh. Fiz., 1956, vol. 26, pp. 2204-2287.

    Google Scholar 

  10. De Donde, Th. and van Rysselberghe, P., Thermodynamic Theory of Affinity, California: Stanford Univ. Press, 1933.

    Google Scholar 

  11. Gutzow, I. and Dobreva, A., Structure, Thermodynamics Properties, and Cooling Rate of Glasses, J. Non-Cryst. Solids, 1991, vol. 129, pp. 266-273.

    Google Scholar 

  12. Gutzow, I., Dobreva, A., and Pye, L.D., Geometric and Analytical Approach to the Process of Vitrification, J.Non-Cryst. Solids, 1995, vol. 180, pp. 107-130.

    Google Scholar 

  13. Tool, J.Q., Thermal Expansion of Glass in Its Annealing Range, J. Am. Ceram. Soc., 1946, vol. 29, pp. 240-253.

    Google Scholar 

  14. Mazurin, O.V., Steklovanie (Glass Transition), Leningrad: Nauka, 1986.

    Google Scholar 

  15. Gutzow, I., Dobreva, A., Russel, C., and Durshang, B., Kinetics of Vitrification under Hydrostatic Pressure and under Tangential Stress, J. Non-Cryst. Solids, 1997, vol. 215, nos. 2-3, pp. 313-319.

    Google Scholar 

  16. Dobreva, A. and Gutzow, I., Kinetics of Vitrification under Electric Fields, J. Non-Cryst. Solids, 1997, vol. 220, pp. 235-242.

    Google Scholar 

  17. Bragg, W.L. and Williams, E.J., Atomic Arrangements in Metals, Proc. R. Soc. London, 1934, vol. 145, pp. 699-718.

    Google Scholar 

  18. Moynihan, C., Estel, A.J., Wilder, J., and Tucker, J., Dependence of Glass Transition Temperature on Heating and Cooling Rates, J. Chem. Phys., 1974, vol. 78, pp. 2673-2677.

    Google Scholar 

  19. Angel, C.A., Spectroscopy Simulation and the Medium Order Problem in Glasses, J. Non-Cryst. Solids, 1985, vol. 73, pp. 1-17.

    Google Scholar 

  20. Tammann, G., Der Glaszustand, Leipzig: Leopold Voss, 1933.

    Google Scholar 

  21. Hutchinson, J.M. and Kovacs, A.J., Temperature and Structural Parameters in Volume and Enthalpy Recovery of Glasses, in Proc. Symp. “The Structure of Non-Crystalline Materials, ” Cambridge (UK), 1977, pp. 167-176.

  22. Gutzow, I., On the Vapor Pressure of Glasses, Z. Phys. Chem., 1972, vol. 81, pp. 195-202.

    Google Scholar 

  23. Gupta, P.K. and Moynihan, C.T., Prigogine-Defay Ratio for Systems with More Then One Order Parameter, J.Chem. Phys., 1976, vol. 65, pp. 4136-4139.

    Google Scholar 

  24. Morey, G.W., The Properties of Glass, New York: Reinhold, 1954.

    Google Scholar 

  25. Shneidman, V.A. and Uhlmann, D.R., Quenching of a Brownian Oscillator, Phys. Rev. E., 1999, vol. 59, no. 4, p. 3954.

    Google Scholar 

  26. Winter, A., The Dependence of Glass Viscosity on Temperature, Verres et Refract., 1953, vol. 7, pp. 217-223.

    Google Scholar 

  27. Jurkov, S.N. and Levin, B.Y., Employment of Molecular Spectroscopy in Study of Glass Transition, Vestn. Leningr. Univ., 1950, vol. 3, pp. 45-53.

    Google Scholar 

  28. Prigogine, I., Introduction to the Thermodynamics of Irreversible Processes, Springfield: Thoma, 1995, ch. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutzow, I., Yamakov, V., Ilieva, D. et al. Generic Phenomenological Theory of Vitrification. Glass Physics and Chemistry 27, 148–159 (2001). https://doi.org/10.1023/A:1011384427512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011384427512

Keywords

Navigation