Skip to main content
Log in

Mechanism for Conversion of the Conductivity Type in Arsenic-Doped p-CdxHg1–xTe Subject to Ionic Etching

  • Published:
Russian Physics Journal Aims and scope

Abstract

Based on an analysis of chemical diffusion of mercury in p-Cd x Hg1–x Te:As narrow-band solid solutions, a mechanism for conversion of the conductivity type upon ionic etching is suggested. It is shown that the np conversion of the conductivity in this case is due to the formation of a donor complex between arsenic in the Te sublattice and an interstitial Hg atom. Moreover, the electron concentration in the converted layer corresponds to the concentration of the implanted arsenic impurity. The theoretical results are confirmed by the experimental investigation of the electron concentration distribution over the n-layer of a p-Cd x Hg1–x Te:As epistructure converted upon ionic etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. T. M. Wotherspoon, UK Patent No. GB 2095898 (1981).

  2. M. V. Blackman, D. E. Charlton, M. D. Jenner, et al., Electron. Lett., 23, 978 (1987).

    Google Scholar 

  3. G. Bahir and E. Finkman, J. Vac. Sci. Technol., A7, 348 (1989).

    Google Scholar 

  4. V. I. Ivanov—Omskii, K. E. Mironov, K. D. Mynbaev, et al., in: Abstracts of Reports at the XII All-Union Conf. Semicond. Physics. Part 2 [in Russian], Kiev (1990), p. 205.

  5. V. I. Ivanov—Omskii, K. E. Mironov, and K. D. Mynbaev, Fiz. Tekh. Poluprovodn., 24, 2222 (1990).

    Google Scholar 

  6. E. Belas, P. Hoschl, R. Grill, et al., Semiscond. Sci. Technol., 8, 1695 (1993).

    Google Scholar 

  7. A. V. Dvurechenskii, V. G. Remesnik, I. A. Ryazantsev, and N. Kh. Talipov, Fiz. Tekh. Poluprovodn., 27, 168 (1993).

    Google Scholar 

  8. E. Belas, R. Grill, J. Franc, et al., J. Cryst. Growth, 159, 1117 (1996).

    Google Scholar 

  9. V. Savitsky, L. Mansurov, I. Fodchuk, et al., Proc. SPIE, 3725, 299 (1999).

    Google Scholar 

  10. V. V. Bogoboyashchiy and I. I. Izhnin, in: Proc. 9th Int. Conf. Narrow-Gap Semicond., Berlin (1999), p. 30.

  11. V. V. Bogoboyashchii and I. I. Izhin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 16 (2000).

  12. E. P. G. Smith, J. F. Siliquini, C. A. Musca, et al., J. Appl. Phys., 83, 5555 (1998).

    Google Scholar 

  13. J. F. Siliquini, J. M. Dell, C. A, Musca, et al., J. Cryst. Growth, 184/185, 1219 (1998).

    Google Scholar 

  14. J. Antoszewski, C. A. Musca, J. M. Dell, and L. Faraone, J. Electr. Mater., 29, 837 (2000).

    Google Scholar 

  15. V. G. Savitsky and O. P. Storchun, Thin Solid Films, 317, 105 (1998).

    Google Scholar 

  16. B. F. Ormont, Introduction to the Physical and Crystal Chemistry of Semiconductors [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  17. P. I. Baranskii, V. P. Klochkov, and I. V. Potykevich, Semiconductor Electronics. A Handbook [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  18. F. A. Kröger, The Chemistry of Imperfect Crystals [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  19. K. R. Kurbanov and V. V. Bogoboyachshiy, Proc. SPIE, 3890, 528 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogoboyashchii, V.V., Vlasov, A.P. & Izhnin, I.I. Mechanism for Conversion of the Conductivity Type in Arsenic-Doped p-CdxHg1–xTe Subject to Ionic Etching. Russian Physics Journal 44, 61–70 (2001). https://doi.org/10.1023/A:1011312902981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011312902981

Keywords

Navigation