Skip to main content
Log in

The distribution of osteocalcin, degree of mineralization, and mechanical properties along the length of Cyprinus carpio rib bone

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study examined the spatial distribution of selected biochemical and mechanical properties along the length of carp rib bone. Carp rib bone was chosen because of its unusually high osteocalcin content relative to other extractable proteins. The amount of osteocalcin was significantly lower (p<0.01) at the most distal section, relative to all other sections. The amount of phosphate (p<0.05) and the elastic modulus in the longitudinal plane (p<0.0001) were found to be significantly higher in the most distal section, relative to the most proximal section. There was no significant difference in the calcium distribution, molar Ca/P ratio, or elastic modulus in the transverse plane. It was speculated that the distal section contains less mature bone. The methods illustrate the potential usefulness of nanoindentation to characterize the mechanical properties of bone, relative to its biochemical composition. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Price, A. S. Otsuka, J. W. Poser, J. Kristaponis and N. Raman, Proc. Natl. Acad. Sci. USA 73 (1976) 1447.

    Google Scholar 

  2. P. A. Price, J. G. Parthemore and L. J. Deftos, J. Clin. Invest. 66 (1980) 878.

    Google Scholar 

  3. P. A. Price, Vitam. Horm. 42 (1985) 65.

    Google Scholar 

  4. P. A. Price, J. W. Lothringer, S. A. Baukol and A. H. Reddi, J. Biol. Chem. 256 (1981) 3781.

    Google Scholar 

  5. P. V. Hauschka, J. B. Lian and P. M. Gallop, Trends Biochem. Sci. 3 (1978) 75.

    Google Scholar 

  6. P. A. Price, J. W. Lothringer and S. K. Nishimoto, J. Biol. Chem. 255 (1980) 2938.

    Google Scholar 

  7. P. A. Price and M. K. Williamson, J. Biol. Chem. 256 (1981) 12754.

    Google Scholar 

  8. M. F. Young, J. M. Kerr, K. Ibaraki, A.-M. Heegaard and P. G. Robey, Clin. Orthop. Rel. Res. 281 (1992) 275.

    Google Scholar 

  9. P. Ducy, C. Desbois, B. Boyce, G. Pinero, B. Story, C. Dunstan, E. Smith, J. Bonadio, S. Goldstein, C. Gundberg, A. Bradley and G. Karsenty, Nature 382 (1996) 448.

    Google Scholar 

  10. S. K. Nishimoto, N. Araki, F. D. Robinson and J. H. Waite, J. Biol. Chem. 267 (1992) 11600.

    Google Scholar 

  11. S. K. Nishimoto, C. H. Chang, F. Gendler, W. F. Stryker and M. E. Nimni, Calcif. Tissue Int. 37 (1985) 617.

    Google Scholar 

  12. S. K. Nishimoto, S. M. Padilla and D. L. Snyder, J. Gerontol. 45 (1990) B164.

    Google Scholar 

  13. S. K. Bhattacharya, J. C. Williams and G. M. A. Palmieri, Analytical Letters 12 (1979) 1451.

    Google Scholar 

  14. G. M. Pharr, Mater. Sci. Engr. A253 (1998) 151.

    Google Scholar 

  15. J.-Y. Rho, P. Zioupos, J. D. Currey and G. M. Pharr, Bone 25 (1999) 295.

    Google Scholar 

  16. P. V. Hauschka and F. H. Wians Jr., Anat. Rec. 224 (1989) 180.

    Google Scholar 

  17. T. Ikeda, S. Nomura, A. Yamaguchi, T. Suda and S. Yoshiki, J. Histochem. Cytochem. 40 (1992) 1079.

    Google Scholar 

  18. I. Mizoguchi, I. Takahashi, Y. Sasano, M. Kagayama, Y. Kuboki and H. Mitani, Anat. Embryol. (Berl) 196 (1997) 291.

    Google Scholar 

  19. G. K. Hunter, P. V. Hauschka, A. R. Poole, L. C. Rosenberg and H. A. Goldberg, Biochem. J. 317 (1996) 59.

    Google Scholar 

  20. A. L. Boskey, S. Gadaleta, C. Gundberg, S. B. Doty, P. Ducy and G. Karsenty, Bone 23 (1998) 187.

    Google Scholar 

  21. D. G. Nelson and J. D. Featherstone, Calcif. Tissue Int. 34(S2) (1982) S69.

    Google Scholar 

  22. F. C. M. Driessens and R. M. H. Verbeeck, Z. Naturforsch 41c (1986) 468.

    Google Scholar 

  23. D. T. Reilly and A. H. Burstein, J. Biomechanics 8 (1975) 393.

    Google Scholar 

  24. M. E. Roy, S. K. Nishimoto, J.-Y. Rho, S. K. Bhattacharya, J. S. Lin and G. M. Pharr, J. Biomed. Mater. Res. 54 (2001) 547.

    Google Scholar 

  25. M. E. Roy, “The role of osteocalcin in the degree of mineralization, mechanical properties, and crystal structure of carp rib bone.” (Ph.D. Dissertation; The University of Memphis, Memphis, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, M.E., Nishimoto, S.K., Rho, J.Y. et al. The distribution of osteocalcin, degree of mineralization, and mechanical properties along the length of Cyprinus carpio rib bone. Journal of Materials Science: Materials in Medicine 12, 699–702 (2001). https://doi.org/10.1023/A:1011268525937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011268525937

Keywords

Navigation