Skip to main content
Log in

Mechanical and structural characteristics of commercially pure grade 2 Ti welds and solder joints

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study aimed at determining whether data previously gathered for a laser welds and IR brazings using a Au–Pd alloy were applicable to titanium joints. As to its resistance under fatigue loading, Au–Pd alloy had shown a poor response to pre-ceramic laser welding and post-ceramic brazing. The present study was designed to assess the mechanical resistance, the microstructure and the elemental diffusion of laser welded, electric arch welded and brazed joints using commercially pure titanium as substrate metal.

Mechanical resistance was determined by determining the joints' ultimate tensile strength and their resistance to fatigue loading. Elemental diffusion to and from the joints was assessed using microprobe tracings. Optical micrographs of the joints were also obtained and evaluated.

Under monotonic tensile stress, three groups emerged: (1) the GTAW and the native (i.e. as received) substrate, (2) the annealed substrate and the laser welds and (3) the brazed joints. Under fatigue stress, the order was: first the native and annealed substrate, second the brazings and laser welds, third the GTAW joints. No Au-filler brazing withstood the applied fatigue loading. The micrographs showed various patterns, an absence of HAZ cracking and several occurrences of Widmanstätten structures. Elemental diffusion to and from the Ti substrate was substantial in the Ti filler brazings and virtually nil in the Au-based brazings.

Under fatigue stress application, the titanium-based brazings as well as the laser- and electric arc welds performed equally well if not better than a previously tested AuPd alloy. There was a definite increase in grain size with increased heat application. However, no feature of the microstructures observed or the elemental analysis could be correlated with the specimen's resistance to fatigue stress application. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinemann, P. A. MÄusli, S. Szmukler-Moncler, M. Semlitsch, O. Pohler, H. E. Hintermann and S. M. Perren, in “Titanium 92', Science and Technology”, edited by F.H. Froes and I. Caplan (The Minerals, Metals and Materials Society, 1993) p. 2689.

  2. P. I. BrÄnemark, R. Adell, U. Breine, B. O. Hansson, J. LindstrÖm and A. Ohlsson, Scand. J. Plast. Reconstr. Surg. 3 (1969) 81.

    Google Scholar 

  3. D. F. Williams, in “Biocompatibility of Clinical Implant Materials”, edited by D.F. Williams (CRC Press, Boca Raton, FL 1984) p. 44.

    Google Scholar 

  4. American Society for Metals. “Metals Handbook — Desk Edition” (ASM International, Materials Park, OH, 1998) p. 555.

    Google Scholar 

  5. J. E. Lemons, L. C. Lucas and B. Johansson, Implant. Dent. 1 (1992) 107.

    Google Scholar 

  6. H. W. A. Wiskott, F. Macheret, F. Bussy and U. C. Belser, J. Prosthet. Dent. 77 (1997) 607.

    Google Scholar 

  7. H. W. A. Wiskott, F. Macheret, C. Susz, R. Barraud, L. Haenny and J. M. Meyer, J. Fra. Biomat. Dent. 11 (1996) 101.

    Google Scholar 

  8. G. SjÖgren, M. Anderson and M. Bergman, Acta. Odontol. Scand. 46 (1988) 247.

    Google Scholar 

  9. E. Berg, W. C. Wagner, G. Davik and E. R. Dootz, J. Prosthet. Dent. 74 (1995) 250.

    Google Scholar 

  10. R. R. Wang and C. T. Chang, ibid. 79 (1998) 335.

    Google Scholar 

  11. T. Forsman, in “Proceedings of the 6th Nordic Laser Materials Processing Conference (NOLAMP 6), Luleå, Sweden, August 27–29, 1997”, edited by C. Magnusson and H. Engström (Materials Processing Division, Luleå University of Technology 1998) p. 44.

  12. American Society for Testing and Materials. “Unalloyed titanium for surgical implant applications”. Annual Book of ASTM Standards, specification F67–83, v. 13.01 (ASTM, Philadelphia, PA, 1984).

    Google Scholar 

  13. American Society for Metals. “Metals Handbook” v. 19 (ASM International, Materials Park, OH, 1996), p. 830.

    Google Scholar 

  14. C. A. Blue and R. Y. Lin, Process Adv. Mater. 4 (1994) 21.

    Google Scholar 

  15. E. J. Hearn, in “Mechanics of Materials” (Pergamon Press, Oxford, 1985) p. 811.

    Google Scholar 

  16. H. W. A. Wiskott, J. I. Nicholls and U. Belser, Dent. Mater. 10 (1994) 215.

    Google Scholar 

  17. H. W. A. Wiskott, J. I. Nicholls and U. Belser, Int. J. Prosthodont. 8 (1995) 105.

    Google Scholar 

  18. E. P. Popov, in “Introduction to the Mechanics of Solids” (Prentice Hall, Englewood Cliffs, NJ 1968).

    Google Scholar 

  19. W. J. Dixon and A. M. Mood, J. Amer. Stat. Assn. 43 (1948) 109.

    Google Scholar 

  20. H. W. A. Wiskott, J. I. Nicholls and U. Belser, Int. J. Prosthodont. 9 (1996) 117.

    Google Scholar 

  21. H. Graf and A. W. Geering, Oral Sci. Reviews. 10 (1977) 1.

    Google Scholar 

  22. P. E. Denney and E. A. Metzbower, Welding Res. Suppl. 68 (1989) 342-s.

    Google Scholar 

  23. H. LÜthy, J. M. Meyer, O. Loeffel and P. SchÄrer, Quintessenz Zahntech. 21 (1995) 627.

    Google Scholar 

  24. H. Mourton and S. K. Marya Int. J. Join Mater. 6 (1994) 100.

    Google Scholar 

  25. A. Lundquist, in “Welding of superalloys with Nd:YAG laser”. MS thesis. Lulcå University of Technology (1995).

  26. B. K. Damkroger, G. R. Edwards and B. B. Bath, Welding Res. Suppl. 68 (1989) 290-s.

    Google Scholar 

  27. D. Hayduk, B. K. Damkroger, G. R. Edwards and D. Olson, Welding J. 65 (1986) 251-s.

    Google Scholar 

  28. H. Inoue and T. Ogawa. Welding Res. Suppl. 74 (1995) 21-s.

    Google Scholar 

  29. W. T. Kaarlela and W. S. Margolis, Welding J. 53 (1974) 629.

    Google Scholar 

  30. X. Heberard, Titanium. 80 (1980) 2415.

    Google Scholar 

  31. D. G. Howden and R. W. Monroe, Welding J. 51 (1972) 31.

    Google Scholar 

  32. S. W. Lan, ibid. 61 (1982) 23.

    Google Scholar 

  33. T. Onzawa, A. Suzumura and M. W. Ko, Welding Res. Suppl. 70 (1990) 462-s.

    Google Scholar 

  34. E. Lugscheider and U. Broich, ibid. 70 (1990) 169-s.

    Google Scholar 

  35. E. Chang and C. H. Chen, J. Mater. Engng. Perform. 6 (1997) 797.

    Google Scholar 

  36. A. Schnuch, J. Geier, W. Uter, P. J. Frosch, W. Lehmacher, W. Aberer, M. Agathos, R. Arnold, T. Fuchs, B. Laubstein, G. Lischka, P. M. Pietrzyk, J. Rakoski, G. Richter and F. Rueff, Contact Dermatitis. 37 (1997) 200.

    Google Scholar 

  37. E. Spiechowicz, P. O. Glantz, T. Axell and P. Grochowski, Eur. J. Prosthodont. Rest. Dent. 7 (1999) 41.

    Google Scholar 

  38. J. Singh J, J. Mater. Sci. 29 (1994) 5232.

    Google Scholar 

  39. F. Morita, J. Takahashi, S. Muneki and T. Kainuma, in “Proceedings of the TMS annual meeting” (San Antonio, Tx, 16–19 February 1998) p. 29.

  40. S. Guillard, M. Thirukkonda and P. K. Chaudhury, in “Proceedings of the TMS annual meeting” (Anaheim, CA, 5–8 February 1996) p. 93.

  41. K. W. Boening, M. H. Walter and P. D. Reppel, J. Oral Rehabil. 19 (1992) 281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselm Wiskott, H.W., Doumas, T., Scherrer, S.S. et al. Mechanical and structural characteristics of commercially pure grade 2 Ti welds and solder joints. Journal of Materials Science: Materials in Medicine 12, 719–725 (2001). https://doi.org/10.1023/A:1011224710916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011224710916

Keywords

Navigation