Skip to main content
Log in

Microstructure and Mechanical Properties of Resistance-Spot-Welded AISI-1008 Steel Lap Joints Using Multiwalled Carbon Nanotubes as an Interlayer

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study deals with the microstructural analysis and mechanical properties of resistance-spot-welded AISI-1008 steel joints utilizing multi-walled carbon nanotubes (MWCNTs) as an interlayer. A thin layer of approximately 50 µm thickness of MWCNTs coating is used as an interlayer between the mating surfaces of the lap joints. The microstructural investigation of the weld nugget was accomplished by light microscopy, scanning electron microscopy, and transmission electron microscopy. An enhancement of ~45% in weld strength at one of the welding parameters is obtained in lap-shear tensile tests due to the MWCNT interlayer. The shear dimple fracture is the prime mode of failure as has been confirmed by fractography. At lower and higher welding energies, interfacial and button pull-out modes of failure were observed to occur, respectively. Microhardness studies along the nugget cross section revealed a marginal increase in hardness owing to the presence of MWCNTs and also the interplay of various strengthening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Chen, X. Yuan, Z. Hu, C. Sun, Y.Y. Zhang and Y.Y. Zhang, Microstructure and Mechanical Properties of Resistance-Spot-Welded Joints for A5052 Aluminum Alloy and DP 600 Steel, Mater. Charact., 2016, 120, p 45–52.

    Article  CAS  Google Scholar 

  2. A. Sharma, V.M. Sharma, B. Sahoo, J. Joseph and J. Paul, Effect of Exfoliated Few-Layered Graphene on Corrosion and Mechanical Behaviour of the Graphitized Al–SiC Surface Composite Fabricated by FSP, Bull. Mater. Sci., 2019, 42(5), p 1–12.

    Google Scholar 

  3. R. Hashemi, H. Pashazadeh and M. Hamedi, An Incrementally Coupled Thermo-Electro-Mechanical Model for Resistance Spot Welding, Mater. Manuf. Process., 2012, 27(12), p 1442–1449.

    Article  CAS  Google Scholar 

  4. Y. Zhang, Z. Luo, Y. Li, Z.M. Liu and Z.Y. Huang, Microstructure Characterization and Tensile Properties of Mg/Al Dissimilar Joints Manufactured by Thermo-Compensated Resistance Spot Welding with Zn Interlayer, Mater. Des., 2015, 75, p 166–173.

    Article  CAS  Google Scholar 

  5. M.R.R. Arghavani, M. Movahedi and A.H.H. Kokabi, Role of Zinc Layer in Resistance Spot Welding of Aluminium to Steel, Mater. Des., 2016, 102, p 106–114. https://doi.org/10.1016/j.matdes.2016.04.033

    Article  CAS  Google Scholar 

  6. M. Sun, S.T. Niknejad, G. Zhang, M.K. Lee, L. Wu and Y. Zhou, Microstructure and Mechanical Properties of Resistance Spot Welded AZ31/AA5754 Using a Nickel Interlayer, Mater. Des., 2015, 87, p 905–913. https://doi.org/10.1016/j.matdes.2015.08.097

    Article  CAS  Google Scholar 

  7. M. Sun, S.T. Niknejad, H. Gao, L. Wu and Y. Zhou, Mechanical Properties of Dissimilar Resistance Spot Welds of Aluminum to Magnesium with Sn-Coated Steel Interlayer, Mater. Des., 2016, 91, p 331–339. https://doi.org/10.1016/j.matdes.2015.11.121

    Article  CAS  Google Scholar 

  8. W. Zhang, D. Sun, L. Han and D. Liu, Interfacial Microstructure and Mechanical Property of Resistance Spot Welded Joint of High Strength Steel and Aluminium Alloy with 4047 AlSi12 Interlayer, Mater. Des., 2014, 57, p 186–194.

    Article  CAS  Google Scholar 

  9. T. Das, B. Sahoo, P. Kumar and J. Paul, Effect of Graphene Interlayer on Resistance Spot Welded AISI-1008 Steel Joints, Mater. Res. Express, 2019, 6(8), p 0865c3. https://doi.org/10.1088/2053-1591/ab23d6

    Article  CAS  Google Scholar 

  10. T. Das, R. Das and J. Paul, Resistance Spot Welding of Dissimilar AISI-1008 Steel/Al-1100 Alloy Lap Joints with a Graphene Interlayer, J. Manuf. Process., 2020, 53, p 260–274. https://doi.org/10.1016/j.jmapro.2020.02.032

    Article  Google Scholar 

  11. T. Das and J. Paul, Resistance Spot Welding of Similar and Dissimilar Metals: The Effect of Graphene Interlayer, JOM, 2020, 72(8), p 2863–2874. https://doi.org/10.1007/s11837-020-04159-8

    Article  CAS  Google Scholar 

  12. T. Das, S. Rawal, S.K. Panda and J. Paul, Resistance Spot-Welding of AISI-1008 Steel Joints with MWCNT Coating Interlayer, Mater. Manuf. Process., 2020, 36(4), p 448–456.

    Article  Google Scholar 

  13. M. Winnicki, A. Małachowska, M. Korzeniowski, M. Jasiorski and A. Baszczuk, Aluminium to Steel Resistance Spot Welding with Cold Sprayed Interlayer, Surf. Eng., 2018, 34(3), p 235–242.

    Article  CAS  Google Scholar 

  14. T. Das, P. Kumar and J. Paul, Resistance Spot Welded Al 1100 Alloy with Carbonaceous Interlayers, Mater. Sci. Forum, 2020, 978, p 3–11. https://doi.org/10.4028/www.scientific.net/MSF.978.3

    Article  Google Scholar 

  15. J.H. Ordoñez, R.R. Ambriz, C. García, G. Plascencia and D. Jaramillo, Overloading Effect on the Fatigue Strength in Resistance Spot Welding Joints of a DP980 Steel, Int. J. Fatigue, 2019, 121, p 163–171.

    Article  Google Scholar 

  16. H.T. Kang, I. Accorsi, B. Patel and E. Pakalnins, Fatigue Performance of Resistance Spot Welds in Three Sheet Stack-Ups, Procedia Eng., 2010, 2(1), p 129–138.

    Article  CAS  Google Scholar 

  17. M. Sun, S.B. Behravesh, L. Wu, Y. Zhou and H. Jahed, Fatigue Behaviour of Dissimilar Al 5052 and Mg AZ31 Resistance Spot Welds with Sn-Coated Steel Interlayer, Fatigue Fract. Eng. Mater. Struct., 2017, 40(7), p 1048–1058. https://doi.org/10.1111/ffe.12563

    Article  CAS  Google Scholar 

  18. G. Janardhan, K. Kishore, G. Mukhopadhyay, and K. Dutta, Fatigue Properties of Resistance Spot Welded Dissimilar Interstitial-Free and High Strength Micro-Alloyed Steel Sheets. Met. Mater. Int., 2020, (0123456789), https://doi.org/10.1007/s12540-020-00678-w.

  19. T. Das and J. Paul, Interlayers in Resistance Spot-Welded Lap Joints: A Critical Review, Metallogr. Microstruct. Anal., 2021, (0123456789) https://doi.org/10.1007/s13632-021-00714-0.

  20. P.A.E. Neubauer, M. Kitzmantel and M. Hulman, Potential and Challenges of Metal-Matrix-Composites Reinforced with Carbon Nanofibers and Carbon Nanotubes, Compos. Sci. Technol., 2010, 70, p 2228–2236.

    Article  CAS  Google Scholar 

  21. M. Pouranvari, S.M. Mousavizadeh, S.P.H. Marashi, M. Goodarzi and M. Ghorbani, Influence of Fusion Zone Size and Failure Mode on Mechanical Performance of Dissimilar Resistance Spot Welds of AISI 1008 Low Carbon Steel and DP600 Advanced High Strength Steel, Mater. Des., 2011, 32(3), p 1390–1398.

    Article  CAS  Google Scholar 

  22. A. Sharma, A. Tripathi, D. Narsimhachary, R.P. Mahto and J. Paul, Surface Alteration of Aluminium Alloy by an Exfoliated Graphitic Tribolayer during Friction Surfacing Using a Consumable Graphite Rich Tool, Surf. Topogr. Metrol. Prop., 2019, 7(4), p 045015. https://doi.org/10.1088/2051-672X/ab4826

    Article  CAS  Google Scholar 

  23. H. Gao and Y. Huang, Geometrically Necessary Dislocation and Size Dependent Plasticity, Scr. mater., 2003, 48, p 113–118.

    Article  CAS  Google Scholar 

  24. A. Fadavi Boostani, S. Yazdani, R. Taherzadeh Mousavian, S. Tahamtan, R. Azari Khosroshahi, D. Wei, D. Brabazon, J.Z. Xu, X.M. Zhang and Z.Y. Jiang, Strengthening Mechanisms of Graphene Sheets in Aluminium Matrix Nanocomposites, Mater. Des., 2015, 88, p 983–989.

    Article  CAS  Google Scholar 

  25. B. Sahoo, S.D. Girhe and J. Paul, Influence of process parameters and temperature on the solid state fabrication of multilayered graphene-aluminium surface nanocomposites, J. Manuf. Process., 2018, 34, p 486–494.

    Article  Google Scholar 

  26. B. Sahoo, J. Joseph, A. Sharma and J. Paul, Particle Size and Shape Effects on the Surface Mechanical Properties of Aluminium Coated with Carbonaceous Materials, J. Compos. Mater., 2019, 53(2), p 261–270.

    Article  CAS  Google Scholar 

  27. B. Sahoo, D. Narsimhachary and J. Paul, Tribological Behavior of Solid-State Processed Al-1100/GNP Surface Nanocomposites, J. Mater. Eng. Perform., 2018, 27(December), p 6529–6544.

    Article  CAS  Google Scholar 

  28. A. Sharma, S. Sagar, R.P. Mahto, B. Sahoo, S.K. Pal and J. Paul, Surface Modification of Al6061 by Graphene Impregnation through a Powder Metallurgy Assisted Friction Surfacing, Surf. Coatings Technol., 2017, 2018(337), p 12–23.

    Google Scholar 

  29. B. Sahoo, D. Narsimhachary and J. Paul, Surface Mechanical and Self-Lubricating Properties of MWCNT Impregnated Aluminium Surfaces, Surf. Eng., 2019, 35(11), p 970–981.

    Article  CAS  Google Scholar 

  30. T. Das, A. Sharma and J. Paul, Effect of Graphene Coating on the Microstructure and Mechanical Properties of Tungsten Inert Gas Surface Melted AISI-316L Steel, Int. J. Mater. Prod. Technol., 2020, 1(1), p 1. https://doi.org/10.1504/IJMPT.2020.10033989

    Article  Google Scholar 

  31. C. Li, X. Yuan, K. Wu, H. Wang, Z. Hu and X. Pan, Nugget Formation and Its Mechanism of Resistance Spot Welded Joints in DP600 Dual-Phase and DC54D Ultralow Carbon Steel, Met. Mater. Int., 2017, 23(3), p 1–11.

    Google Scholar 

  32. V.H.L. Cortéz, F.A.R. Valdés and L.T. Treviño, Weldability of Martensitic Steel by Resistance Spot Welding a Neural Network Optimization in the Automotive Industry, Mater. Manuf. Process., 2009, 24(12), p 1412–1417.

    Article  Google Scholar 

  33. V. Vijayan, N. Huda, S.P. Murugan, C. Jeong, S.M. Noh, N. Kang and Y. Do Park, The Weldability Study of Carbon Nanotube Based 2nd Generation Primer Coated Steel for Automotive Applications, J. Mech. Sci. Technol., 2017, 31(9), p 4405–4410.

    Article  Google Scholar 

  34. L. Deng, R.J. Young, I.A. Kinloch, R. Sun, G. Zhang, L. Noé and M. Monthioux, Coefficient of Thermal Expansion of Carbon Nanotubes Measured by Raman Spectroscopy, Appl. Phys. Lett., 2014, 104(5), p 051907.

    Article  Google Scholar 

  35. B. Sahoo and J. Paul, Solid State Processed Al-1100 Alloy/MWCNT Surface Nanocomposites, Materialia, 2018, 2018(2), p 196–207. https://doi.org/10.1016/j.mtla.2018.08.003

    Article  Google Scholar 

  36. M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain and J. She, Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng. A, 2015, 630, p 36–44.

    Article  CAS  Google Scholar 

  37. H. Choi, G. Kwon, G. Lee and D. Bae, Reinforcement with Carbon Nanotubes in Aluminum Matrix Composites, Scr. Mater., 2008, 59(3), p 360–363. https://doi.org/10.1016/j.scriptamat.2008.04.006

    Article  CAS  Google Scholar 

  38. A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri and D. Lahiri, Strengthening Mechanism in Graphene Nanoplatelets Reinforced Aluminum Composite Fabricated through Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 695, p 20–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinu Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Panda, S.K. & Paul, J. Microstructure and Mechanical Properties of Resistance-Spot-Welded AISI-1008 Steel Lap Joints Using Multiwalled Carbon Nanotubes as an Interlayer. J. of Materi Eng and Perform 30, 3333–3341 (2021). https://doi.org/10.1007/s11665-021-05687-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05687-3

Keywords

Navigation