Skip to main content
Log in

Faber-Schauder Wavelet Transform, Application to Edge Detection and Image Characterization

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The Faber-Schauder wavelet transform is a simple multiscale transformation with many interesting properties in image processing. Some of these properties are: preservation of pixel ranges, arithmetic operations, non requirement of boundary processing, multiscale edge detection, elimination of the constant and the linear correlation, and the use of close neighboring information. In this study we describe this transformation and we propose a mixed scale visualization of the wavelet transform which makes it possible to show the transform result as an image. This visualization is used, with orientation information, to refine edge detection and image characterization by selecting regions with a high density of extrema wavelet coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aldroubi, “Oblique and hierarchical multiwavelet bases,” Appl. Comput. Harmon. Anal., Vol.4, pp. 231–263, 1997.

    Google Scholar 

  2. A. Aldroubi and M. Unser, “Families of multiresolution and wavelet spaces withoptimal properties,” Numer. Funct. Anal. Optim., Vol. 14, pp. 417–446, 1993.

    Google Scholar 

  3. P.J. Burt and E.H. Adelson,“The Laplacian pyramid as a compact image code,” IEEE Trans. Comm., Vol. COM-31, pp. 532–540, 1983.

    Google Scholar 

  4. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet transforms that map integers to integers,” Appl.Comput. Harmon. Anal., Vol. 5, No. 3, pp. 332–369, 1998.

    Google Scholar 

  5. J. Canny, “A computational approach toedge detection,” IEEE Trans. onPattern Analysis andMachine Intelligence,Vol. PAMI-8, pp. 679–698, 1986.

    Google Scholar 

  6. A. Cohen, I. Daubechies, and J. Feauveau, “Bi-orthogonal bases of compactly supported wavelets,” Comm. Pure Appl.Math., Vol. 45, pp. 485–560, 1992.

    Google Scholar 

  7. I. Daubechies, “Orthonormal basis of compactly supported wavelets,”Comm. Pure & App. Math., Vol. 41, pp. 909–996, 1988.

    Google Scholar 

  8. I. Daubechies, CBMS-NSF Series Appl. Math.,SIAM, 1991.

  9. E.P. Simoncelli and E.H. Adelson, “Subband transforms,” in Subband Image coding, John W. Woods (Ed.), Kluwer Academic Publishers: Norwell, MA, 1990, Ch. 4, pp. 143–192.

    Google Scholar 

  10. S.G. Mallat, “Atheory for multiresolution signal decomposition: The wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, 1989.

  11. S.G. Mallat, “Multifrequency channel decompositions ofimages and wavelet models,” IEEE Trans. on Acoustics; Speech; and Signal Processing, Vol. 37, No. 12, pp. 2091–2110, 1989.

    Google Scholar 

  12. S.G. Mallat, A Wavelet Tour of Signal Processing, Academic Press: New York,1998.

    Google Scholar 

  13. S.G. Mallat and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. on PatternAnalysis and Machine Intelligence, Vol. 14, No. 7, 1992.

  14. D. Marr and E. Hildreth, “Theory of edgedetection,” Proc. Royal Soc. London, Vol. 207, pp. 187–217, 1980.

    Google Scholar 

  15. Y. Meyer. Ondelettes et Operateurs,I: Ondelettes, II: Operateurs de Calder on-Zygmund, III: (with R. Coifman), Operateurs multilineaires. Hermann, Paris, 1990.

    Google Scholar 

  16. Y. Meyer, “Ondelettes sur l'intervalle,” Cahiers de la mathématiques de la décision no:9020, Centre derecherche de mathématiques,” de la décision (CEREMADE). 1992.

  17. W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal wavelets,” Appl. Comput. Harmon. Anal., Vol. 3, No. 2, pp. 186–200, 1996.

    Google Scholar 

  18. W. Sweldens, “The lifting scheme:Aconstruction of second generation wavelets,” SIAM J. Math. Anal.,Vol. 29, No. 2, pp. 511–546, 1997.

    Google Scholar 

  19. W. Sweldens and P. Schroder, “Building your own wavelets athome,” In Wavelets in Computer Graphics, pp. 15–87. ACM SIGGRAPH Course notes, 1996.

  20. M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline wavelet transforms,” Signal Process., Vol. 30, pp. 141–162, 1993.

    Google Scholar 

  21. V.M. Wickerhauser, “Adapted Wavelet analysis from theory to software,” IEEE Press, AK Peters: Boston, 1994.

    Google Scholar 

  22. A. Zandi, J. Allen, E. Schwartz, and M. Boliek, “CREW: Compression with recersible embeddedwavelets,” in IEEE Data Conference (Snowbird, Utah) March 1995, pp. 212–221.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douzi, H., Mammass, D. & Nouboud, F. Faber-Schauder Wavelet Transform, Application to Edge Detection and Image Characterization. Journal of Mathematical Imaging and Vision 14, 91–101 (2001). https://doi.org/10.1023/A:1011213914008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011213914008

Navigation