Skip to main content

Efficient Analysis and Detection of Edges Through Directional Multiscale Representations

  • Chapter
Harmonic and Applied Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA,volume 68))

Abstract

The analysis and detection of edges and interface boundaries is a fundamental problem in applied mathematics and image processing. In the study of the wave equation, for example, one is interested in the evolution of moving fronts; in image processing and computer vision, the detection and analysis of edges is an essential task for applications such as shape recognition, image enhancement, and classification. Multiscale methods and wavelets have been very successful in this area, due to a combination of useful micro-analytical properties and fast numerical implementations. The continuous wavelet transform in particular has the ability to signal the location of the singularities of functions and distributions through its asymptotic decay at fine scales. However, this approach is unable to provide additional information about the geometry of the singularity set, such as the edge orientation. This limitation can be overcome by using the continuous shearlet transform, an approach combining the analytical power of multiscale analysis and high directional sensitivity. This chapter gives an overview of the microlocal properties of the shearlet transform and illustrates its ability to provide a precise geometric characterization of edges and interface boundaries in images and other multidimensional data. These results provide the theoretical groundwork for innovative applications in problems of edge detection, feature extraction, and geometric separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Clearly one could try to define a wavelet-like system using dilations and rotations rather than dilations and shear. This is what is done by the curvelet approach. One difference, in the curvelet case, is that one loses the group structure inherited by the theory of affine systems.

  2. 2.

    Note that, in [30], the theorem is stated under more general assumptions on ψ satisfying an appropriate admissibility condition. The special function we consider here is in fact one example of a function satisfying such admissibility condition.

References

  1. Bros, J., Iagolnitzer, D.: Support essentiel et structure analytique des distributions. Seminaire Goulaouic-Lions-Schwartz 19 (1975–76)

    Google Scholar 

  2. Calderòn, A.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24(2), 113–190 (1964). URL http://eudml.org/doc/217085

  3. Candès, E.J., Demanet, L.: The curvelet representation of wave propagators is optimally sparse. Commun. Pure Appl. Anal. 58(11), 1472–1528 (2005)

    Article  MATH  Google Scholar 

  4. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Anal. 57(2), 219–266 (2004)

    Article  MATH  Google Scholar 

  5. Candès, E.J., Donoho, D.L.: Continuous curvelet transform: I. resolution of the wavefront set. Appl. Comp. Harm. Analysis 19, 162–197 (2005)

    MATH  Google Scholar 

  6. Córdoba, A., Fefferman, C.: Wave packets and fourier integral operators. Commun. Partial Differ. Equ. 3(11), 979–1005 (1978)

    Article  MATH  Google Scholar 

  7. Dahlke, S., De Mari, F., De Vito, E., Häuser, S., Steidl, G., Teschke, G.: Different faces of the shearlet group. ArXiv (1404.4545) (2014). URL http://arxiv.org/abs/1404.4545

  8. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H., Teschke, G.: The uncertainty principle associated with the continuous shearlet transform. IJWMIP 6(2), 157–181 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Dahlke, S., Steidl, G., Teschke, G.: The continuous shearlet transform in arbitrary space dimensions. J. Fourier Anal. Appl. 16(3), 340–364 (2010). DOI 10.1007/s00041-009-9107-8. URL http://dx.doi.org/10.1007/s00041-009-9107-8

  10. Delort, J.: F.B.I. transformation: second microlocalization and semilinear caustics. In: Lecture Notes in Mathematics, vol. 1522. Springer, Berlin/Heidelberg (1992)

    Google Scholar 

  11. Donoho, D.L., Kutyniok, G.: Commun. Pure Appl. Math. 66(1), 1–47 (2013). DOI 10.1002/cpa.21418. URL http://dx.doi.org/10.1002/cpa.21418

  12. Duval-Poo, M., Odone, F., De Vito, E.: Edges and corners with shearlets. preprint (2015)

    Google Scholar 

  13. Folland, G.B.: Real Analysis, 2nd edn. Pure and Applied Mathematics (New York). Wiley, New York (1999). Modern techniques and their applications. A Wiley-Interscience Publication

    Google Scholar 

  14. Friedlander, G., Joshi, M.: Introduction to the Theory of Distributions, 2nd edn. Cambridge University Press, New York (1998)

    Google Scholar 

  15. Gérard, P.: Moyennisation et regularité deux-microlocale. Ann. Scient. Ec. Norm. Sup., 4eme serie 23, 89–121 (1990)

    Google Scholar 

  16. Grohs, P.: Continuous shearlet frames and resolution of the wavefront set. Monatshefte für Mathematik 164(4), 393–426 (2011). DOI 10.1007/s00605-010-0264-2. URL http://dx.doi.org/10.1007/s00605-010-0264-2

  17. Grossmann, A.: Wavelet transforms and edge detection. In: Albeverio, S., Blanchard, P., Hazewinkel, M., Streit, L. (eds.) Stochastic Processes in Physics and Engineering, Mathematics and Its Applications, vol. 42, pp. 149–157. Springer, Dordrecht (1988)

    Chapter  Google Scholar 

  18. Guo, K., Houska, R., Labate, D.: Microlocal analysis of singularities from directional multiscale representations. In: Fasshauer, G.E., Schumaker, L.L. (eds.) Approximation Theory XIV: San Antonio 2013, Springer Proceedings in Mathematics and Statistics, vol. 83, pp. 173–196. Springer, New York (2014)

    Google Scholar 

  19. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, K., Labate, D.: Representation of fourier integral operators using shearlets. J. Fourier Anal. Appl. 14, 327–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, K., Labate, D.: Characterization and analysis of edges using the continuous shearlet transform. SIAM J. Imag. Sci. 2(3), 959–986 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, K., Labate, D.: Analysis and detection of surface discontinuities using the 3d continuous shearlet transform. Appl. Comput. Harmon. Anal. 30, 231–242 (2010)

    Article  MathSciNet  Google Scholar 

  23. Guo, K., Labate, D.: Characterization of piecewise smooth surfaces using the 3d continuous shearlet transform. J. Fourier Anal. Appl. 18, 488–516 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, K., Labate, D.: Characterization and analysis of edges in piecewise smooth functions. preprint (2015)

    Google Scholar 

  25. Guo, K., Labate, D.: Geometric separation of singularities using combined multiscale dictionaries. J. Fourier Anal. Appl. (in press) (2015)

    Google Scholar 

  26. Guo, K., Labate, D., Lim, W.: Edge analysis and identification using the continuous shearlet transform. Appl. Comput. Harmon. Anal. 27(1), 24–46 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, W., Lai, M.: Box spline wavelet frames for image edge analysis. SIAM J. Imag. Sci. 6(3), 1553–1578 (2013). DOI 10.1137/120881348

    Article  MathSciNet  MATH  Google Scholar 

  28. Herz, C.S.: Fourier transforms related to convex sets. Ann. Math. 75, 81–92 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. Holschneider, M.: Wavelets: An Analysis Tool. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  30. Houska, R., Labate, D.: Detection of boundary curves on the piecewise smooth boundary surface of three dimensional solids. Appl. Comput. Harmon. Anal. (2014)

    Google Scholar 

  31. Jaffard, S.: Pointwise smoothness, two-microlocalization and wavelet coefficients. Publicacions Matemàtiques 35(1), 155–168 (1991). URL http://eudml.org/doc/41681

  32. Jaffard, S., Meyer, Y.: Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions, vol. 123. Mem. Am. Math. Soc. (1996)

    Google Scholar 

  33. Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Am. Math. Soc. 361(5), 2719–2754 (2009). DOI 10.1090/S0002-9947-08-04700-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Labate, D., Laezza, F., Negi, P., Ozcan, B., Papadakis, M.: Efficient processing of fluorescence images using directional multiscale representations. Math. Model. Nat. Phenom. 9(5), 177–193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Laugesen, R., Weaver, N., Weiss, G., Wilson, E.: A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12(1), 89–102 (2002). DOI 10.1007/BF02930862. URL http://dx.doi.org/10.1007/BF02930862

  36. Marr, D.: Early processing of visual information. Phil. Trans. R. Soc. Lond. B 275, 483–524 (1976)

    Article  Google Scholar 

  37. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 207(1167), 187–217 (1980). DOI 10.2307/35407. URL http://dx.doi.org/10.2307/35407

  38. Meyer, Y.: Ondelettes et Opérateurs. Hermann, Paris (1990)

    Google Scholar 

  39. Ozcan, B., Labate, D., Jiménez, D., Papadakis, M.: Directional and non-directional representations for the characterization of neuronal morphology. In: Proc. SPIE. Wavelets XV (San Diego, CA, 2013), vol. 8858, pp. 885,803–885,803–11 (2013). DOI 10.1117/12.2024777. URL http://dx.doi.org/10.1117/12.2024777

  40. Schug, D., Easley, G., O’Leary, D.: Three-dimensional shearlet edge analysis. In: Proc. SPIE, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, vol. 8058 (2011). DOI 10.1117/12.884194. URL http://dx.doi.org/10.1117/12.884194

  41. Shui, P., Zhang, W.: Noise-robust edge detector combining isotropic and anisotropic gaussian kernels. Pattern Recogn. 45(2), 806–820 (2012). DOI 10.1016/j.patcog.2011.07.020. URL http://dx.doi.org/10.1016/j.patcog.2011.07.020

  42. Weiss, G., Wilson, E.: The mathematical theory of wavelets. In: Byrnes, J. (ed.) Twentieth Century Harmonic Analysis - A Celebration, NATO Science Series, vol. 33, pp. 329–366. Springer, Dordrecht (2001)

    Chapter  Google Scholar 

  43. Yi, S., Labate, D., Easley, G., Krim, H.: Edge detection and processing using shearlets. In: Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on, pp. 1148–1151 (2008). DOI 10.1109/ICIP.2008.4711963

    Google Scholar 

  44. Yi, S., Labate, D., Easley, G., Krim, H.: A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 18(5), 929–941 (2009)

    Article  MathSciNet  Google Scholar 

  45. Ziou, D., Tabbone, S.: Edge detection techniques - an overview. Int. J. Pattern Recogn. 8, 537–559 (1998)

    Google Scholar 

Download references

Acknowledgements

The authors are partially supported by NSF grant DMS 1008900/1008907. DL is also partially supported by NSF grant DMS 1005799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrio Labate .

Editor information

Editors and Affiliations

Appendix

Appendix

We recall some basic facts from Fourier analysis, including the Fourier transform of distributions. We refer the reader to [13, 14] for additional details.

4.1.1 The Fourier transform

\(L^{1}(\mathbb{R}^{n})\) is the space of Lebesgue integrable function on \(\mathbb{R}^{n}\) and \(L^{2}(\mathbb{R}^{n})\) the Hilbert space of square Lebesgue integrable function on \(\mathbb{R}^{n}\) endowed with the inner product \(\langle f,g\rangle =\int _{\mathbb{R}^{n}}f\overline{g}\). The Schwartz space \(\mathcal{S}(\mathbb{R}^{n})\) consists of those functions in \(C^{\infty }(\mathbb{R}^{n})\) which, together with all their derivatives, vanish at infinity faster than any power of | x | . That is,

$$\displaystyle{\mathcal{S}(\mathbb{R}^{n}) =\{ f \in C^{\infty }(\mathbb{R}^{n}):\sup _{ x\in \mathbb{R}^{n}}(1 + \vert x\vert )^{N}\vert \partial ^{\alpha }f(x)\vert < \infty,\mbox{ for all }N,\alpha \},}$$

where N is any nonnegative integer and \(\alpha = (\alpha _{1},\ldots,\alpha _{n}) \in \mathbb{N}^{n}\) is any multi-index.

Definition 4.11.

The Fourier transform is the operator \(\mathcal{F}\) mapping a function \(f \in L^{1}(\mathbb{R}^{n})\) into \(\mathcal{F}f =\hat{ f}\) defined by

$$\displaystyle{\hat{f}(\xi ) =\int _{\mathbb{R}^{n}}f(x)e^{-2\pi ix\cdot \xi }dx.}$$

The inverse Fourier transform is the operator \(\mathcal{F}^{-1}\) mapping a function \(g \in L^{1}(\mathbb{R}^{n})\) into \(\mathcal{F}^{-1}g =\check{ g}\), where

$$\displaystyle{\check{g}(x) =\hat{ g}(-x) =\int _{\mathbb{R}^{n}}g(\xi )e^{2\pi ix\cdot \xi }d\xi.}$$

It is a fact that \(g = (\hat{g})^{\vee }\) for any function \(g \in L^{1}(\mathbb{R}^{n})\) with \(\hat{g} \in L^{1}(\mathbb{R}^{n})\).

The Fourier transform is a bijection of \(\mathcal{S}\) onto itself and can be extended via an appropriate limit to a unitary map from L 2 onto itself. Under this extension, the Fourier inversion theorem is valid and, for \(f,g \in L^{2}(\mathbb{R}^{n})\), the Plancherel formula holds:

$$\displaystyle{\langle f,g\rangle =\langle \hat{ f},\hat{g}\rangle,}$$

and, in particular,

$$\displaystyle{\|f\|_{2} =\|\hat{ f}\|_{2}.}$$

Among the most important properties of Fourier analysis we recall the following list of results (cf. [13]).

Theorem 4.12.

Let \(f,g \in L^{1}(\mathbb{R}^{n})\) . For \(y \in \mathbb{R}^{n}\) , let T y f(x) = f(x − y) and, for \(M \in GL_{n}(\mathbb{C})\) , let \(D_{M}f(x) = \vert \det M\vert ^{-1/2}f(M^{-1}x)\).

  1. (i)

    \((T_{y}f)^{\wedge }(\xi ) = e^{-2\pi i\xi \cdot y}\hat{f}(\xi )\) and \((D_{M}f)^{\wedge }(\xi ) = D_{N}\hat{f}(\xi ),\) where N = (M ) −1 .

  2. (ii)

    \((f {\ast} g)^{\wedge } =\hat{ f}\,\hat{g}.\)

  3. (iii)

    If x α f ∈ L 1 for |α|≤ k, then \(\partial ^{\alpha }\hat{f} = \left ((-2\pi ix)^{\alpha }f\right )^{\wedge }.\)

  4. (iv)

    If f ∈ C k , \(\partial ^{\alpha }\hat{f} \in L^{1}\) , for |α|≤ k, and \(\partial ^{\alpha }\hat{f} \in C_{0}\) , for |α|≤ k − 1, then \((\partial ^{\alpha }\hat{f})^{\wedge }(\xi ) = (2\pi i\xi )^{\alpha }\hat{f}(\xi ).\)

  5. (v)

    \(\mathcal{F}\left (L^{1}(\mathbb{R}^{n})\right ) \subset C_{0}(\mathbb{R}^{n})\) .

The following proposition is a simple application of the Fourier transform showing that regularity on \(\mathbb{R}^{n}\) implies decay in the Fourier domain.

Proposition 4.13.

Suppose that \(\psi \in L^{2}(\mathbb{R}^{n})\) is such that \(\hat{\psi }\in C_{c}^{\infty }(R)\) , where \(R =\mathop{ \mathrm{supp}}\nolimits \hat{\psi } \subset \mathbb{R}^{n}\) . Then, for each \(k \in \mathbb{N}\) , there is a constant C k > 0 such that, for any \(x \in \mathbb{R}^{n}\) , we have

$$\displaystyle{ \vert \psi (x)\vert \leq C_{k}\,(1 + \vert x\vert ^{2})^{-k}. }$$

In particular, \(C_{k} = k\,m(R)\,{\bigl (\Vert \hat{\psi }\Vert _{\infty } +\Vert \bigtriangleup ^{k}\hat{\psi }\Vert _{\infty }\bigr )}\) , where \(\bigtriangleup =\sum _{ i=1}^{n} \frac{\partial ^{2}} {\partial \xi _{i}^{2}}\) is the Fourier-domain Laplacian operator and m(R) is the Lebesgue measure of R.

Proof.

From the definition of the Fourier transform, it follows that, for every \(x \in \mathbb{R}^{n}\),

$$\displaystyle{ \vert \psi (x)\vert \leq m(R)\,\Vert \hat{\psi }\Vert _{\infty }. }$$
(4.19)

An integration by parts shows that

$$\displaystyle{\int _{R}\bigtriangleup \hat{\psi }(\xi )\,e^{2\pi i\langle \xi,x\rangle }\,d\xi = -(2\pi )^{2}\,\vert x\vert ^{2}\,\psi (x).}$$

Thus, for every \(x \in \mathbb{R}^{n}\),

$$\displaystyle{ (2\pi \,\vert x\vert )^{2k}\,\vert \psi (x)\vert \leq m(R)\,\Vert \bigtriangleup ^{k}\hat{\psi }\Vert _{ \infty }. }$$
(4.20)

Using (4.19) and (4.20), we have

$$\displaystyle{ {\bigl (1 + (2\pi \,\vert x\vert )^{2k}\bigr )}\,\vert \psi (x)\vert \leq m(R)\,{\bigl (\Vert \hat{\psi }\Vert _{ \infty } +\Vert \bigtriangleup ^{k}\hat{\psi }\Vert _{ \infty }\bigr )}. }$$
(4.21)

Observe that, for each \(k \in \mathbb{N}\),

$$\displaystyle{(1 + \vert x\vert ^{2})^{k} \leq {\bigl ( 1 + (2\pi )^{2}\,\vert x\vert ^{2}\bigr )}^{k} \leq k\,{\bigl (1 + (2\pi \,\vert x\vert )^{2k}\bigr )}.}$$

Using this last inequality and (4.21), we have that for each \(x \in \mathbb{R}^{n}\)

$$\displaystyle{ \vert \psi (x)\vert \leq k\,m(R)\,(1 + \vert x\vert ^{2})^{-k}\,{\bigl (\Vert \hat{\psi }\Vert _{ \infty } +\Vert \bigtriangleup ^{k}\hat{\psi }\Vert _{ \infty }\bigr )}. }$$

 □ 

Under the same assumptions of Proposition 4.13, we can derive a similar estimate valid for ψ M, t  = T t D M ψ. Using a change of variables in the last step of the proof above, we have that for all k > 0 there is a C k  > 0 such that

$$\displaystyle{\vert \psi _{M,t}(x)\vert \leq C_{k}\,\vert \det M\vert ^{-\frac{1} {2} }\,(1 + \vert M^{-1}(x - t)\vert ^{2})^{-k}.}$$

4.1.2 Distributions and the Fourier transform of distributions

The space \(\mathcal{D}(\mathbb{R}^{n})\) of test functions is the space of all \(C^{\infty }\) functions whose support is compact. A sequence {ϕ j } in \(\mathcal{D}(\mathbb{R}^{n})\) converges in \(\mathcal{D}\) to ϕ if the supports of all ϕ j are contained in a fixed compact subset of \(\mathbb{R}^{n}\) and if \(\partial ^{\alpha }\phi _{j} \rightarrow \partial ^{\alpha }\phi\) uniformly for all multi-indices α.

Definition 4.14.

A distribution is a continuous linear functional on \(\mathcal{D}\) and the space of distributions is denoted by \(\mathcal{D}'\). We impose the weak topology on \(\mathcal{D}'\), that is, the topology of pointwise convergence on \(\mathcal{D}\).

If \(F \in \mathcal{D}'(\mathbb{R}^{n})\) and \(\phi \in \mathcal{D}(\mathbb{R}^{n})\), we denote the value of F at ϕ by F(ϕ) or \(\langle F,\phi \rangle\). The latter notation conflicts with the notation of inner product but its meaning will be clear by the context.

Given two distribution F and G, we say that F = G if \(\langle F,\phi \rangle =\langle G,\phi \rangle\), for all \(\phi \in \mathcal{D}(\mathbb{R}^{n})\).

Example 4.15.

Every \(f \in L_{loc}^{1}(\mathbb{R}^{n})\) defines a distribution by \(\phi \in \mathcal{S}(\mathbb{R}^{n}) \rightarrow \int _{\mathbb{R}^{n}}f\phi\).

Example 4.16.

The Dirac’s impulse δ is defined by \(\delta (\phi ) =\langle \delta,\phi \rangle =\phi (0)\), \(\phi \in \mathcal{S}(\mathbb{R}^{n})\). This is an example of a distribution which is not a function.

Example 4.17.

The distribution \(\mathop{\mathrm{pv}}\nolimits (\frac{1} {x})\) is defined by

$$\displaystyle{\langle \mathop{\mathrm{pv}}\nolimits (\tfrac{1} {x}),\phi \rangle = P.V.\int _{\mathbb{R}} \frac{\phi (x)} {x} \,dx =\lim _{\varepsilon \rightarrow 0}\int _{-\varepsilon }^{\varepsilon }\frac{\phi (x)} {x} \,dx,}$$

for \(\phi \in \mathcal{S}(\mathbb{R})\), where P.V. is the principal value of the integral.

There is a general procedure for extending many linear operations from functions to distributions.

  • Differentiation. For any \(F \in \mathcal{D}'(\mathbb{R}^{n})\), the derivatives \(\partial ^{\alpha }F \in \mathcal{D}'(\mathbb{R}^{n})\) are given by

    $$\displaystyle{\langle \partial ^{\alpha }F,\phi \rangle = (-1)^{\vert \alpha \vert }\langle F,\partial ^{\alpha }\phi \rangle.}$$
  • Multiplication by a smooth function. Given \(g \in C^{\infty }(\mathbb{R}^{n})\), for any \(F \in \mathcal{D}'(\mathbb{R}^{n})\), the product \(gF \in \mathcal{D}'(\mathbb{R}^{n})\) is given by

    $$\displaystyle{\langle gF,\phi \rangle =\langle F,g\phi \rangle.}$$
  • Convolution. Let \(g \in C^{\infty }(\mathbb{R}^{n})\). For any \(F \in \mathcal{D}'(\mathbb{R}^{n})\), the convolution \(F {\ast} g \in \mathcal{D}'(\mathbb{R}^{n})\) is given by

    $$\displaystyle{\langle F {\ast} g,\phi \rangle =\langle F,\phi {\ast}\tilde{g}\rangle,}$$

    where \(\tilde{g}(x) = g(-x)\).

For example, let H be the one-dimensional Heaviside function, defined by H(x) = 0 if x < 0, H(x) = 1 if x ≥ 0. A direct computation shows that, for any \(\phi \in \mathcal{S}(\mathbb{R})\),

$$\displaystyle{\langle H',\phi \rangle = -\langle H,\phi '\rangle = -\int _{0}^{\infty }\phi '(x)\,dx =\phi (0) =\langle \delta,\phi \rangle.}$$

Hence H′ = δ.

The following class of distributions are useful to extend the Fourier transform beyond the realm of classical functions.

Definition 4.18.

A tempered distribution is a continuous linear functional on \(\mathcal{S}\) and the space of tempered distributions is denoted by \(\mathcal{S}'\). We impose the weak topology on \(\mathcal{S}'\), that is, the topology of pointwise convergence on \(\mathcal{S}\).

Example 4.19.

Every \(f \in L_{loc}^{1}(\mathbb{R}^{n})\) such that \(\int _{\mathbb{R}^{n}}(1 + \vert x\vert )^{N}\,\vert f(x)\vert \,dx < \infty \) defines a tempered distribution by \(\phi \rightarrow \int f\phi\).

Example 4.20.

Any distribution with compact support is tempered.

The Fourier transform extends to a continuous linear map from \(\mathcal{S}'\) to itself by defining

$$\displaystyle{\langle \hat{F},\phi \rangle =\langle F,\hat{\phi }\rangle,\quad F \in \mathcal{S}',\phi \in \mathcal{S}.}$$

This definition agrees with the classical definition when \(F \in L^{1} \cap L^{2}\). Furthermore, it is easy to verify that the basic properties of the Fourier transform continue to hold. In particular, for \(F \in \mathcal{S}'(\mathbb{R}^{n})\), we have the following formulas.

  1. (i)

    \((T_{y}F)^{\wedge } = e^{-2\pi i\xi \cdot y}\hat{F}\) and \((D_{M}F)^{\wedge } = D_{N}\hat{F},\) where N = (M )−1.

  2. (ii)

    \((F {\ast} g)^{\wedge } =\hat{ F}\,\hat{g},\) for \(g \in \mathcal{S}(\mathbb{R}^{n})\).

  3. (iii)

    \(\partial ^{\alpha }\hat{F} = \left ((-2\pi ix)^{\alpha }F\right )^{\wedge }.\)

  4. (iv)

    \((\partial ^{\alpha }\hat{F})^{\wedge } = (2\pi i\xi )^{\alpha }\hat{F}.\)

Similarly, the inverse Fourier transform is defined on \(\mathcal{S}'\) by

$$\displaystyle{\langle \check{F},\phi \rangle =\langle F,\check{\phi }\rangle,\quad F \in \mathcal{S}',\phi \in \mathcal{S},}$$

and, for all \(F \in \mathcal{S}'(\mathbb{R}^{n})\), \(F = (\check{F})^{\wedge } = (\hat{F})^{\vee }.\)

Example 4.21.

For any \(\phi \in \mathcal{S}(\mathbb{R})\),

$$\displaystyle{\langle \hat{\delta },\phi \rangle =\langle \delta,\hat{\phi }\rangle =\hat{\phi } (0) =\int _{\mathbb{R}}\phi (x)\,dx =\langle 1,\phi \rangle.}$$

Hence \(\hat{\delta }= 1\). It follows that, for any \(y \in \mathbb{R}\), the Fourier transform of δ y  = T y δ is \(\hat{\delta }_{y}(\xi ) = e^{-2\pi iy\xi }\) and, for any \(k \in \mathbb{N}\), \(\widehat{\delta ^{(k)}}(\xi ) = (2\pi i\xi )^{k}.\)

Example 4.22.

We will show that \(\widehat{\mathop{\mathrm{sgn}}\nolimits }(\xi ) = \frac{1} {i\pi } \mathop{ \mathrm{pv}}\nolimits (\frac{1} {\xi } )\), where \(\mathop{\mathrm{sgn}}\nolimits\) is the signum function, that is defined as \(\mathop{\mathrm{sgn}}\nolimits (x) = -1\) of x < 0, \(\mathop{\mathrm{sgn}}\nolimits (x) = 0\) of x ≥ 0. In order to derive this result, we consider first the functions f n defined by \(f_{n}(x) = \left \{\begin{array}{@{}l@{\quad }l@{}} -e^{x/n}\quad &\mbox{ if }x < 0 \\ e^{-x/n}\quad &\mbox{ if }x > 0 \end{array} \right.\), where \(n \in \mathbb{N}\). An application of Lebesgue Dominated Convergence theorem shows that f n converges to \(f =\mathop{ \mathrm{sgn}}\nolimits\) as \(n \rightarrow \infty \) in the sense of tempered distributions, that is, \(\langle f_{n},\phi \rangle \rightarrow \langle \mathop{\mathrm{sgn}}\nolimits,\phi \rangle\) as \(n \rightarrow \infty \), for all \(\phi \in \mathcal{S}(\mathbb{R}).\) A direct computation (note that \(f_{n} \in L^{1}(\mathbb{R})\)) shows that

$$\displaystyle{\hat{f}_{n}(\xi ) =\int _{ 0}^{\infty }e^{-x/n}e^{-2\pi ix\xi }\,dx -\int _{ -\infty }^{0}e^{x/n}e^{-2\pi ix\xi }\,dx = \frac{1} { \frac{1} {n} + 2\pi i\xi } - \frac{1} { \frac{1} {n} - 2\pi i\xi }.}$$

Finally, we use that fact that if \((F_{n}),F \in \mathcal{S}'\) and \(\langle F_{n},\phi \rangle \rightarrow \langle F,\phi \rangle\) for all \(\phi \in \mathcal{S},\) then \(\langle \hat{F}_{n},\phi \rangle \rightarrow \langle \hat{ F},\phi \rangle\) for all \(\phi \in \mathcal{S}.\) Since

$$\displaystyle{\lim _{n\rightarrow \infty }\langle \hat{f}_{n},\phi \rangle = \frac{1} {i\pi } P.V.\int \frac{\phi (\xi )} {\xi } d\xi,}$$

we conclude that \(\widehat{\mathop{\mathrm{sgn}}\nolimits }(\xi ) = \frac{1} {i\pi } \mathop{ \mathrm{pv}}\nolimits (\frac{1} {\xi } )\).

Example 4.23.

The one-dimensional Heaviside function H(x) can be written as \(H(x) = \frac{1} {2} + \frac{1} {2}\,\mathop{ \mathrm{sgn}}\nolimits (x)\). It follows that \(\hat{H}(\xi ) = \frac{1} {2}\delta (\xi ) + \frac{1} {2\pi i}\,\mathop{ \mathrm{pv}}\nolimits (\frac{1} {\xi } ).\)

Example 4.24.

Let us consider the two-dimensional Heaviside function \(H_{1}(x_{1},x_{2}) =\chi _{x_{1}>0}(x_{1},x_{2})\). Since it can be written as the tensor product \(H_{1}(x_{1},x_{2}) = H(x_{1})1(x_{2})\), it follows that \(\hat{H}_{1}(\xi _{1},\xi _{2}) = \frac{1} {2}\delta (\xi _{1})\delta (\xi _{2}) + \frac{\delta (\xi _{1})} {2\pi i} \,\mathop{ \mathrm{pv}}\nolimits (\frac{1} {\xi } _{1}).\)

4.1.3 Singular support and wavefront set

The notion of singular support is introduced to describe the location where a distribution fails to be smooth. Since a distribution is not defined at a single point, this definition requires to deal with open sets containing the point of interest.

For a distribution F, we say that \(x_{0} \in \mathbb{R}^{n}\) is a regular point of F if there exists a function \(g \in C^{\infty }(U)\), where \(U \subset \mathbb{R}^{n}\) is an open neighborhood of x 0 and g(x 0) = 1, such that \(gF \in C^{\infty }(U)\). The complement of the set of the regular points of F is called the singular support of F and is denoted by \(\mathop{\mathrm{sing}}\nolimits \mathop{\mathrm{supp}}\nolimits (F)\). It is easy to see that the singular support of F is a closed set.

For example, \(\mathop{\mathrm{sing}}\nolimits \mathop{\mathrm{supp}}\nolimits (\delta ) =\{ 0\}\). Also \(\mathop{\mathrm{sing}}\nolimits \mathop{\mathrm{supp}}\nolimits (\mathop{\mathrm{pv}}\nolimits (\frac{1} {x})) =\{ 0\}\).

Note that the condition \(gF \in C^{\infty }(U)\) is equivalent to \((gF)^{\wedge }\) being rapidly decreasing, i.e., for all N > 0 there exists a C N  > 0 such that

$$\displaystyle{(gF)^{\wedge }(\xi )\vert \leq C_{ N}\,(1 + \vert \xi \vert )^{-N}.}$$

If a function or distribution fails to be smooth, we can look not only for the location of the singularity in space, but also for the orientation of the singularity.

We shall say that a set \(\varGamma \in \mathbb{R}^{n}\setminus \{0\}\) is conic if \(\xi \in \varGamma\) implies that \(\lambda \xi \in \varGamma\) for all \(\lambda > 0\). A conic neighborhood of a point is an open conic set containing it. For a distribution F, the point \((x,\xi ) \in \mathbb{R}^{n} \times \mathbb{R}^{n}\setminus \{0\}\) is a regular directed point of F if there exists a function \(g \in C^{\infty }(U)\), where \(U \subset \mathbb{R}^{n}\) is an open neighborhood of x and g(x) = 1, such that \(gF \in C^{\infty }(U)\) and, for al N > 0, there exists a C N  > 0 such that

$$\displaystyle{\vert (gF)^{\wedge }(\xi )\vert \leq C_{ N}\,(1 + \vert \xi \vert )^{-N},}$$

for all \(\xi\) is a conic neighborhood containing the direction \(\xi _{0}\). The complement in \(\mathbb{R}^{n} \times \mathbb{R}^{n}\setminus \{0\}\) of the set of regular directed points of F is called the wavefront set of F and is denoted by WF(F).

Example 4.25.

Let x = (x′, x″) be a splitting of the coordinates and define the distribution F by

$$\displaystyle{\langle F,\phi \rangle =\int \phi (0,x'')\,dx''.}$$

It is easy to see that \(\mathop{\mathrm{sing}}\nolimits \mathop{\mathrm{supp}}\nolimits (F) =\{ (x',x''): x' = 0\}\). To compute the wavefront set, observe that, for \(\gamma \in C^{\infty }(U)\), where U is a neighborhood of a point x 0 = (x 0′, x 0″), we have:

$$\displaystyle{\langle \gamma F,\phi \rangle =\int \gamma (0,x'')\,\phi (0,x'')\,dx''.}$$

Thus, \((\gamma F)^{\wedge }(\xi ) =\hat{\gamma } _{0}(\xi '')\), where γ 0(x″) = γ(0, x″). Since γ 0 is \(C^{\infty }\) and compactly supported, its Fourier transform has rapid decay as a function of \(\xi ''\) but is constant as a function of \(\xi '\). Hence we conclude that \(WF(F) =\{ (0,x'',\xi ',0)\}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guo, K., Labate, D. (2015). Efficient Analysis and Detection of Edges Through Directional Multiscale Representations. In: Dahlke, S., De Mari, F., Grohs, P., Labate, D. (eds) Harmonic and Applied Analysis. Applied and Numerical Harmonic Analysis, vol 68. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-18863-8_4

Download citation

Publish with us

Policies and ethics