Skip to main content
Log in

Annealing Effects in (Hg,Cr)Sr2CuO4+δ: Transport and X-Ray Absorption Studies

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Superconducting (Hg1−x Cr x )Sr2CuO4+δ, x ∼ 0.36, samples of 1201-type, synthesized in partial vacuum, show T c onset of ∼58 K, T c (R = 0) ∼52 K. It is found that T c is not affected by the subsequent Ar or O2 annealing treatment. Remarkably, the annealed samples show significant improvement in the diamagnetic signal. Hg L3-edge measurements on 1201 samples show divalent state of mercury. The Cu K-edge spectra for the samples, after taking due account of the impurity phases, show noticeable modifications in the split main peak features on Ar or O2 annealing, suggesting changes in the crystal field asymmetry. In the superconducting (SC) samples, a weak but distinct signature of Cu1+ is seen. The Cu1+ feature is absent in all the non-SC 1201 samples as well as in the impurity phase SrCuO2 and Sr2CuO3 samples. An attempt is made to explain the observed Cu1+ feature in SC (Hg,Cr)-1201 in the light of the available reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. N. Putilin, E. V. Antipov, O. Chmaissem, and M. Marezio, Nature 362, 226 (1993).

    Google Scholar 

  2. A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 363, 56 (1993).

    Google Scholar 

  3. S. N. Putilin, E. V. Antipov, and M. Marezio, Physica C 212, 266 (1993).

    Google Scholar 

  4. E. V. Antipov, S. M. Loureiro, C. Chaillout, J. J. Capponi, P. Bordet, J. L. Tholence, S. N. Putilin, and M. Marezio, Physica C 215, 1 (1993).

    Google Scholar 

  5. O. Chmaissem, Q. Huang, S. N. Putilin, M. Marezio S. M. Loureiro, J. J. Capponi, J. L. Tholence, and A. Santoro, Physica C 217, 265 (1993).

    Google Scholar 

  6. R. L. Meng, L. Beauvais, X. N. Zhang, Z. N. Zhang, Z. J. Huang, Y. Y. Sin, Y. Y. Xue, and C. W. Chu, Physica C 216, 21 (1993).

    Google Scholar 

  7. D. Pelloquin, C. Michel, G. Van Tendeloo, A. Maignan, M. Hervieu, and B. Raveau, Physica C 214, 87 (1993).

    Google Scholar 

  8. Z. Z. Sheng and A. M. Hermann, Nature 332, 138 (1988).

    Google Scholar 

  9. F. Goutenoire, P. Daniel, C. Michel, G. Van Tendeloo, A. Maignan, M. Hervieu, and B. Raveau, Physica C 216, 257 (1993).

    Google Scholar 

  10. C. Martin, M. Hervieu, M. Huve, C. Michel, A. Maignan, G. Van Tendeloo, and B. Raveau, Physica C 222, 19 (1994).

    Google Scholar 

  11. M. Hervieu, G. Van Tendeloo, A. Maignan, C. Michel, F. Goutenoire, and B. Raveau, Physica C 216, 264 (1993).

    Google Scholar 

  12. I. K. Gopalakrishnan, J. V. Yakhmi, and R. M. Iyer, Physica C 175, 183 (1991).

    Google Scholar 

  13. J. Shimoyama, S. Hahakura, K. Kitazawa, K. Yamafuji, and K. Kishio, Physica C 224, 1 (1994).

    Google Scholar 

  14. K. K. Singh, V. Kirtikar, A.P.B. Sinha, and D. E. Morris, Physica C 231, 9 (1994).

    Google Scholar 

  15. S. Hahakura, J. Shimoyama, O. Shiino, T. Hasegawa, and K. Kishio, Physica C 233, 1 (1994).

    Google Scholar 

  16. S. Hahakura, J. Shimoyama, O. Shiino, T. Hasegawa, K. Kitazawa, and K. Kishio, Physica C 235–240, 915 (1994).

    Google Scholar 

  17. O. Chmaissem, D. N. Argyriou, D. G. Hinks, J. D. Jorgensen, B. G. Storey, H. Zhang, L. D. Marks, Y. Y. Wang, V. P. Dravid, and B. Dabrowski, Phys. Rev. B 52, 15636 (1995).

    Google Scholar 

  18. O. Chmaissem, T. Z. Deng, and Z. A. Sheng, Physica C 242, 17 (1995).

    Google Scholar 

  19. J. B. Mandal, B. Bandyopadhyay, B. Ghosh, H. Rajagopal, A. Sequeira, and J. V. Yakhmi, J. Supercond. 9, 261 (1996).

    Google Scholar 

  20. B. Bandyopadhyay, J. B. Mandal, B. Ghosh, A. Poddar, and P. Choudhury, Physica B 223–224, 580 (1996).

    Google Scholar 

  21. J. H. Choi, M. S. Kim, S. Lee, S. Y. Lee, J. V. Yakhmi, J. B. Mandal, B. Bandyopadhyay, and B. Ghosh, Phys. Rev. B 58, 538 (1998).

    Google Scholar 

  22. E. Kandyel, X. J. Wu, S. Adachi, and S. Tajima, Physica C 322, 9 (1999).

    Google Scholar 

  23. J. L. Wagner, P. G. Radaelli, D. G. Hinks, J. D. Jorgensen, J. F. Mitchell, B. Dabrowski, G. S. Knapp, and M. A. Beno, Physica C 210, 447 (1993).

    Google Scholar 

  24. L.W. Finger, R.M. Hazen, R. T. Downs, R. L. Meng, and C.W. Chu, Physica C 26, 216 (1994).

    Google Scholar 

  25. J. L. Wagner, B. A. Hunter, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. B 51, 15407 (1995).

    Google Scholar 

  26. A. Asab, A. R. Armstrong, I. Gameson, and P. P. Edwards, Physica C 255, 180 (1995).

    Google Scholar 

  27. A. Bertinotti, D. Colson, J. Hammann, J. F. Marucco, D. Luzet, A. Pinatel, and V. Viallet, Physica C 250, 213 (1995).

    Google Scholar 

  28. E. T. Alexandre, S.M. Loureiro, E. V. Antipov, P. Bordet, S. D. Brion, J. J Capponi, and M. Marezio, Physica C 245, 207 (1995).

    Google Scholar 

  29. D. Pelloquin, V. Hardy, A. Maignan, and B. Raveau, Physica C 273, 205 (1997).

    Google Scholar 

  30. M. Hirabayashi, K. Tokiwa, H. Ozawa, Y. Noguchi, M. Tokumoto, and H. Ihara, Physica C 219, 6 (1994).

    Google Scholar 

  31. O. Chmaissem, Q. Huang, S. N. Putilin, M. Marezio, and A. Santoro, Physica C 212, 259 (1993).

    Google Scholar 

  32. Q. Huang, J. W. Lynn, Q. Xiong, and C. W. Chu, Phys. Rev. B 52, 462 (1995).

    Google Scholar 

  33. P. Bordet, F. Duc, S. Lefloch, J. J. Capponi, E. Alexandre, M. Rosa-Nunes, S. Putilin, and E. V. Antipov, Physica C 271, 189 (1996).

    Google Scholar 

  34. P. G. Radaelli, J. L. Wagner, B. A. Hunter, M. A. Beno, G. S. Knapp, J. D. Jorgensen, and D. G. Hinks, Physica C 216, 29 (1993).

    Google Scholar 

  35. E. V. Antipov, J. J Capponi, C. Chaillout, O. Chmaissem, S. M. Loureiro, M. Marezio, S. N. Putilin, A. Santoro, and J. L. Tholence, Physica C 218, 348 (1993).

    Google Scholar 

  36. S. Reich and D. Veretnik, Physica C 231, 1 (1994).

    Google Scholar 

  37. L. J. Winch and M. S. Islam, J. Chem. Soc., Chem. Commun. 1595 (1995).

  38. M. S. Islam and L. J. Winch, Phys. Rev. B 52, 10510 (1995).

    Google Scholar 

  39. X. Zhang, S. Y. Xu, and C. K. Ong, Physica C 262, 13 (1996).

    Google Scholar 

  40. V. L. Aksenov, A.M. Balagurov, V. V. Sikolenko, V. G. Simkin, V. A. Alyoshin, E.V. Antipov, A.A. Gippius, D.A. Mikhailova, S. N. Putilin, and F. Bouree, Phys. Rev. B 55, 3966 (1997).

    Google Scholar 

  41. B. D. Padalia, S. J. Gurman, P. K. Mehta, and Om Prakash, Indian J. Pure Appl. Phys. 30, 640 (1992).

    Google Scholar 

  42. Sanjay Gupta, R. Suba, B. D. Padalia, Om Prakash, R. M. Nayak, I. K. Gopalakrishnan, and J. V. Yakhmi, Physica C 292, 183 (1997).

    Google Scholar 

  43. J. Rohler, A. Larisch, and R. Schafer, Physica C 191, 57 (1992).

    Google Scholar 

  44. A. I. Nazzal, V. I. Lee, E.M. Engler, R. D. Jacowitz, Y. Tokura, and J. B. Torrance, Physica C 153–155, 1367 (1988).

    Google Scholar 

  45. O. Chmaissem, J. D. Jorgensen, D. G. Hinks, B. G. Storey, B. Dabrowski, H. Zhang, and L.D. Marks, PhysicaC 279, 1 (1997).

    Google Scholar 

  46. S. Malo, C. Michel, D. Pelloquin, M. Hervieu, O. Toulemode, and B. Raveau, Physica C 304, 213 (1998).

    Google Scholar 

  47. S. M. Loureiro, Y. Matsui, and E. Takayama-Muromachi, Physica C 302, 244 (1998).

    Google Scholar 

  48. K. Knizek, M. Veverka, and E. Pollert, Physica C 311, 303 (1999).

    Google Scholar 

  49. S. Balamurugan, S. Gupta, B. D. Padalia, O. Prakash, I. K. Gopalakrishnan, J. V. Yakhmi, and P. Selvam, Solid State Phys. (India) 43 (in press).

  50. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Croft, Nature 337, 720 (1989).

    Google Scholar 

  51. E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, Phys. Rev. B 40, 2617 (1989).

    Google Scholar 

  52. Sanjay Gupta, R. Suba, B. D. Padalia, Om Prakash, I. K. Gopalakrishnan, and J. V. Yakhmi, Physica C 314, 98 (1999).

    Google Scholar 

  53. B. Lengeler, M. Wilhelm, B. Jobst, W. Schwaen, B. Seebacher, U. Hillebrecht, A. G. Siemens, U. Zentrale Forschung, Entwicklung, München, and Erlangen, Physica C 153–155, 143 (1998).

    Google Scholar 

  54. N. Nücker, E. Pellegrin, P. Schweiss, J. Fink, S. L. Molodtsov, C. T. Simmons, G. Kaindl, W. Frentrup, A. Erb, G. Müller, and Vogt, Phys. Rev. B 51, 8529 (1995).

    Google Scholar 

  55. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Suenaga, Phys. Rev. B 35, 7187 (1987).

    Google Scholar 

  56. P. Selvam, J.V. Yakhmi, P. Veluchamy, H. Minoura, J.B. Mandal, B. Bandyopadhyay, B. Ghosh, in Proceedings of International Symposium (ASMCCD'96) on Advances in Superconductivity, R. Pinto, S. K. Malik, A. K. Grover, and P. Ayyub, eds. (New Age Int., New Delhi, 1997).

    Google Scholar 

  57. F. Studer, D. Pelloquin, A. Maignan, C. Michel, M. Hervieu, and B. Raveau, Physica C 242, 1 (1995).

    Google Scholar 

  58. D. Kim, S. Oh, I. S. Yang, and N. H. Hur, Physica C 253, 351 (1995).

    Google Scholar 

  59. L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, Phys. Rev. B 50, 4260 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balamurugan, S., Gupta, S., Padalia, B.D. et al. Annealing Effects in (Hg,Cr)Sr2CuO4+δ: Transport and X-Ray Absorption Studies. Journal of Superconductivity 14, 429–435 (2001). https://doi.org/10.1023/A:1011194926498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011194926498

Navigation