Skip to main content
Log in

Functional and structural landscape indicators of intensification, resilience and resistance in agroecosystems in southern Argentina based on remotely sensed data

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

There is increasing interest in developing criteria to evaluate the environmental implications of intensive agricultural land use. This implies discriminating between nature and man-made effects upon structural and functional attributes of agroecosystems. Adequate indicators of these combined effects should be cost efficient yet compatible with the core of ecological theory on biodiversity, spatial organization and ecosystem stability. We developed resistance-resilience metrics of plant growth to evaluate the intensity of agricultural use in a temperate irrigated basin in southern Argentina. The metrics are based on an analysis of the components of a temporal series of vegetation indices computed at a low resolution from available globally remote sensed reflectance imagery. We related the developed metrics to the properties of the soils and plant canopies observed at field scale and high-resolution imagery of the basin. Soil depth, soil erosion status and land fragmentation account for large fractions of the variance of the distribution of functional groups of the plant canopies and are also correlated with smaller scale attributes of land vegetation cover. Resistance-resilience indicators constitute a cost-efficient and adequate approach to evaluate the degree of intensification of land agricultural use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ares, J., Miglierina, A.M., Sanchez, R. and Rosell, R. 1998. CLFUG: A GIS-scaleable model of pesticide fate in the soilgroundwater system based on clearance and fugacity paradigms. Ecol Model Assessment 3: 95–105.

    Google Scholar 

  • Baldock, D. 1990. Agriculture and habitat loss in Europe. CAP Discussion Paper 3. WWW Gland, Switzerland.

    Google Scholar 

  • Bastian, O. and Röder, M. 1998. Assessment of landscape change by land evaluation of past and present situation. Landsc Urban Planning 41: 171–182.

    Google Scholar 

  • Bloomfield R. 1976. Time-series analysis. Academic Press, New York, NY, USA.

    Google Scholar 

  • Brouwer, F. 1999. Agroenvironmental indicators in the European Union: policy requirements and data availability. In Environmental Indicators and Agicultural Policy. pp. 57–72. Edited by F. Brouwer, and B. Crabtree. CABI Publishing, Oxon, UK.

    Google Scholar 

  • Cappannini, D.A. and Lores, P.L. 1967. Los suelos del valle inferior del río Colorado, Prov. de Buenos Aires. Colección Suelos #1, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, BA, Argentina.

    Google Scholar 

  • Cabrera, A. 1953. Manual de la Flora de los alrededores de Buenos Aires. Acme, Buenos Aires, Argentina.

    Google Scholar 

  • Cabrera, A. and Willink, A. 1980. Biogeografía de América Latina. Secretaría General de la Organización de Estados Americanos, Washington D.C., USA.

    Google Scholar 

  • Correa M. N. 1969–1988. Flora Patagónica. Tomos II, III, IVa-b, V, VII, VIII. Colecciön Científica, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.

    Google Scholar 

  • Crist, A. and Cicone, C. 1994. Application of the tasseled cup concept to simulated thematic mapper data. Photogram Eng Remote Sensing 50: 343–352.

    Google Scholar 

  • Eastman, R.1997. Idrisi's forWindows User's Guide. Clark Labs for Cartographic Technology and Geographic Analysis. Worcester, MA, USA.

  • Eidenshink, J.C. and Faundeen, J.L 1994. The 1-km AVHRR Global Land Data Set: first stages in implementation. Int J Remote Sensing 15: 3443–3452.

    Google Scholar 

  • Girardin, P. and Buckstaller, C. 1997. Les indicateurs agroecologiques pour evaluer des systemes de culture. OCL 4: 418–426.

    Google Scholar 

  • Gulink, H. and Mugica, M. 1997. Review of the EEA Report: European Landscapes. Classification, Evaluation and Conservation. European Environmental Agency, Copenhagen, Denmark.

    Google Scholar 

  • IGM, Instituto Geográfico Militar, 1967. Cartas topográficas de la RepÚblica Argentina. Ejército Argentino. Buenos Aires, Argentina.

    Google Scholar 

  • Kauth, R.J. and Thomas, G.S. 1976. The tasseled cap – A graphic description of the spectral temporal development of agricultural crops as seen by Landsat. Proceedings of the Symposium on Machine Processing of Remotely sensed data Perdue University, West Lafayette, IN, USA.

  • Kirby, M.J. 1999. Landscape modeling at regional to continental scales. In Process modeling and landform evolution. pp. 189–203. Edited by E.S. Hergarten and H. Neugebauer. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Magurran, A.E. 1988. Ecological diversity and its measurement. Croom Helm, London, UK.

    Google Scholar 

  • McNaughton, S. J. 1994. Biodiversity and function in grazing ecosystems. In Biodiversity and ecosystem function. pp. 361-383. Edited by E.D. Schulze and H.A. Mooney. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Meyer, O. 1994. Functional groups of microorganisms. In Biodiversity and ecosystem function. pp. 67–96. Edited by E.D. Schulze and H.A. Mooney. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Norusis, M. 1995. SPSS Statistical Package. Guide to Data Analysis. Prentice Hall, N. Jersey, USA.

    Google Scholar 

  • OECD. 1994. The use of environmental indicators for agricultural policy analysis. COM/AGR/CA/ENV/EPOC94-98, OECD, Paris, France.

    Google Scholar 

  • Pain, D.J. and Pienkowsky, R. 1997. Farming and Birds in Europe: the Common Agricultural Practice and Its Implications for Bird Conservation. Academic Press, London, UK.

    Google Scholar 

  • Parris, K. 1999. Environmental indicators for agriculture: overview in OECD countries. In Environmental Indicators and Agicultural Policy. pp. 25–44. Edited by F. Brouwer and B. Crabtree. CABI Publishing, Oxon, UK.

    Google Scholar 

  • Pickup, G., Chewings, V.H. and Nelson, D.J. 1993. Estimating changes in vegetation cover over time in arid rangelands using Landsat data. Remote Sensing Environ. 43: 243–264.

    Google Scholar 

  • Romstad, E. 1997. Team approaches in reducing non-point source pollution. Disc. Paper no. D-01-1997. Department of Economics and Social Sciences. Agricultural University of Norway, As., Norway.

    Google Scholar 

  • Romstad, E. 1999. Theoretical considerations in the development of environmental indicators. In Environmental Indicators and Agicultural Policy. pp. 15–23. Edited by F. Brouwer and B. Crabtree. CABI Publishing, Oxon, UK.

    Google Scholar 

  • Rundell, G. 1990. Peakfit. Non-linear curve fitting software. Technical Guide. Jandel Sci., San Rafael, USA.

    Google Scholar 

  • Ruthenberg, H. 1980. Farming systems in the tropics. 3rd. de. Clarenden, Oxford, UK.

    Google Scholar 

  • Swift, M. J. and Anderson, J.M. 1994. Biodiversity and ecosystem function in agricultural ecosystems. In Biodiversity and ecosystem function. pp. 15–41. Edited by E.D. Schulze and H.A. Mooney. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Tappeiner, V., Tassen, E. and Tappeiner, G. 1998. Modeling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS-based model applied to an alpine area. Ecol Modeling 113: 225–237.

    Google Scholar 

  • Tucker, G.M. and Heath, M.F. 1994. Birds in Europe: their conservation status. Birdlife Conservation Series no. 3, Birdlife International, Cambridge, UK.

    Google Scholar 

  • Tucker, G. 1999. Measuring the impacts of agriculture on biodiversity. In Environmental Indicators and Agicultural Policy. pp. 89–204. Edited by F. Brouwer and B. Crabtree. CABI Publishing, Oxon, UK.

    Google Scholar 

  • United States Environmental Protection Agency 1995. Conceptual framework to support development and use of environmental information in decision making. Doc. no.39-R-95-012. US Environmental Protection Agency, Washington D.C., USA.

    Google Scholar 

  • Van Wambeke, A. and Scoppa, C. 1976. Climatic taxa of argentine soils. RIA Series 3, #1, 39 pp. National Institute of Agricultural Technology, Buenos Aires, Argentina.

    Google Scholar 

  • Vitousek, P. M. and Hooper, D.V. 1994. Biological diversity and terrestrial ecosystem biogeochemistry. In Biodiversity and Ecosystem Function. pp. 3–14. Edited by E.D. Schulze and H.A. Mooney. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Walter, H. 1983. Vegetation of the Earth and Ecological Systems of the Geo-Biosphere. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Wright, R.G. and Tamimoto, P.D. 1998. Using GIS to prioritize land conservation actions integrating factors of habitat diversity, land ownership and development risks. Nat Areas J 18: 38–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ares, J., Bertiller, M. & del Valle, H. Functional and structural landscape indicators of intensification, resilience and resistance in agroecosystems in southern Argentina based on remotely sensed data. Landscape Ecology 16, 221–234 (2001). https://doi.org/10.1023/A:1011172006029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011172006029

Navigation