Skip to main content

Designing Multifunctional and Resilient Agricultural Landscapes: Lessons from Long-Term Monitoring of Biodiversity and Land Use

  • Chapter
  • First Online:
The Changing Status of Arable Habitats in Europe

Abstract

In this chapter, we illustrate how the current challenges of agriculture - i.e. maintaining food security while preserving biodiversity, landscapes and ecosystem functions - have been addressed in a long-term social-ecological research site, the Zone Atelier Plaine & Val de Sèvre, operated since 1994. After a presentation of the study area and its research program, we present landscape changes over the past 25 years. Then, we review the most relevant studies conducted in this area that examined the effect of landscape on farmland biodiversity. We focus on biodiversity because it is a central tenet of sustainable agriculture, which delivers ecosystem services that benefit human well-being and ensure ecosystem stability and resilience. Finally, we show that approaches that sustain biodiversity can also support food production, the delivery of multiple ecosystem services and the economy of local stakeholders. One major result from studies in the LTSER ZA-PVS is that biodiversity decline is a severe threat to food security in itself: improving biodiversity can improve yields, gross margins, or both. Biodiversity in arable habitats is, therefore, required to maintain food security, especially through pollination, natural pest regulation and soil services. Long-term monitoring of biodiversity, ecosystem functioning and agricultural practices as well as land use revealed that the interplay between local and landscape factors can provide solutions to reach these goals of multifunctionality (biodiversity, food production and farmers’ profitability) in agricultural landscapes. The next step is to engage stakeholders, in collaboration with scientists, and increase awareness of their mutual interdependencies with nature to foster the transition to more agroecological farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agence BIO (2019) Agence bio. Available at: https://www.agencebio.org/wp-content/uploads/2019/06/DP-AGENCE_BIO-4JUIN2019.pdf

  • Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N et al (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843

    PubMed  PubMed Central  Google Scholar 

  • Altieri MA (1983) Agroecology: the scientific basis of alternative agriculture. Division of Biological Control, University of California, Berkeley

    Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:1261071

    Article  PubMed  CAS  Google Scholar 

  • Angelstam P, Manton M, Elbakidze M, Sijtsma F, Adamescu MC, Avni N et al (2018) LTSER platforms as a place-based transdisciplinary research infrastructure: learning landscape approach through evaluation. Landsc Ecol 34:1–24

    Google Scholar 

  • Badenhausser I, Amouroux P, Lerin J, Bretagnolle V (2009) Acridid (Orthoptera: Acrididae) abundance in Western European grasslands: sampling methodology and temporal fluctuations. J Appl Entomol 133:720–732

    Article  Google Scholar 

  • Badenhausser I, Gross N, Mornet V, Roncoroni M, Saintilan A, Rusch A (2020) Increasing amount and quality of green infrastructures at different scales promotes biological control in agricultural landscapes. Agric Ecosyst Environ 290:106735

    Article  CAS  Google Scholar 

  • Barnaud C, Corbera E, Muradian R, Salliou N, Sirami C, Vialatte A et al (2018) Ecosystem services, social interdependencies, and collective action: a conceptual framework. Ecol Soc 23:15

    Article  Google Scholar 

  • Bennett EM (2017) Changing the agriculture and environment conversation. Nat Ecol Evol 1:1–2

    Article  Google Scholar 

  • Binder S, Isbell F, Polasky S, Catford JA, Tilman D (2018) Grassland biodiversity can pay. Proc Natl Acad Sci U S A 115:3876–3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Bonnet T, Crespin L, Pinot A, Bruneteau L, Bretagnolle V, Gauffre B (2013) How the common vole copes with modern farming: insights from a capture-mark-recapture experiment. Agric Ecosyst Environ 177:21–27

    Article  Google Scholar 

  • Bourgeois B, Gaba S, Plumejeaud C, Bretagnolle V (2020) Weed diversity is driven by complex interplay between multi-scale dispersal and local filtering. Proc. R. Soc. London. Ser. B, Biol. Sci. 287:20201118

    Google Scholar 

  • Breeze TD, Boreux V, Cole L, Dicks L, Klein A, Pufal G et al (2019) Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People Nat 1:562–572

    Article  Google Scholar 

  • Bretagnolle V, Gauffre B, Meiss H, Badenhausser I (2011a) The role of grassland areas within arable cropping systems for the conservation of biodiversity at the regional level. In: Lemaire G, Hodgson J, Chabbi A (eds) Grassland productivity and ecosystem services. CAB International, Cambridge, MA, pp 251–260

    Chapter  Google Scholar 

  • Bretagnolle V, Villers A, Denonfoux L, Cornulier T, Inchausti P, Badenhausser I (2011b) Rapid recovery of a depleted population of Little Bustards Tetrax tetrax following provision of alfalfa through an agri-environment scheme. Ibis (Lond 1859) 153:4–13

    Article  Google Scholar 

  • Bretagnolle V, Berthet E, Gross N, Gauffre B, Plumejeaud C, Houte S et al (2018a) Description of long-term monitoring of farmland biodiversity in a LTSER. Data Br 19:1310–1313

    Article  Google Scholar 

  • Bretagnolle V, Berthet E, Gross N, Gauffre B, Plumejeaud C, Houte S et al (2018b) Towards sustainable and multifunctional agriculture in farmland landscapes: lessons from the integrative approach of a French LTSER platform. Sci Total Environ 627:822–834

    Article  CAS  PubMed  Google Scholar 

  • Bretagnolle V, Siriwardena G, Miguet P, Henckel L, Kleijn D (2018c) Local and landscape scale effects of heterogeneity in shaping bird communities and population dynamics: crop-grassland interactions. In: Agroecosystem diversity: reconciling contemporary agriculture and environmental quality. Elsevier Science, San Diego, pp 241–243

    Google Scholar 

  • Bretagnolle V, Benoit M, Bonnefond M, Breton V, Church JM, Gaba S et al (2019) Action-orientated research and framework: insights from the French long term social-ecological research network. Ecol Soc 24:10

    Article  Google Scholar 

  • Brodier S, Augiron S, Cornulier T, Bretagnolle V (2014) Local improvement of skylark and corn bunting population trends on intensive arable landscape: a case study of the conservation tool Natura 2000. Anim Conserv 17:204–216

    Article  Google Scholar 

  • Caro G, Marrec R, Gauffre B, Roncoroni M, Augiron S, Bretagnolle V (2016) Multi-scale effects of agri-environment schemes on carabid beetles in intensive farmland. Agric Ecosyst Environ 229:48–56

    Article  Google Scholar 

  • Catarino R, Bretagnolle V, Perrot T, Vialloux F, Gaba S (2019a) Bee pollination outperforms pesticides for oilseed crop production and profitability. Proc R Soc B Biol Sci 286:20191550

    Article  Google Scholar 

  • Catarino R, Gaba S, Bretagnolle V (2019b) Experimental and empirical evidence shows that reducing weed control in winter cereal fields is a viable strategy for farmers. Sci Rep 9004

    Google Scholar 

  • Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932

    Article  PubMed  Google Scholar 

  • Cumming GS, Allen CR, Ban NC, Biggs D, Biggs HC, Cumming DHM et al (2015) Understanding protected area resilience: a multi-scale, social-ecological approach. Ecol Appl 25:299–319

    Article  PubMed  Google Scholar 

  • Del Grosso SJ, Parton WJ, Adler PR, Davis SC, Keough C, Marx E (2012) Daycent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems. In: Managing agricultural greenhouse gases. Elsevier, San Diego, pp 241–250

    Chapter  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Faure J, Gaba S, Mouysset L (in review) Designing multifunctional landscapes: the hidden consequences of the interdependency between the stakeholders through pollination. In revision

    Google Scholar 

  • Gaba S, Bretagnolle V (2020) Social-ecological experiments to foster agroecological transition. People Nat. 2(2):317-327

    Google Scholar 

  • Gaba S, Bretagnolle F, Rigaud T, Philippot L (2014) Managing biotic interactions for ecological intensification of agroecosystems. Front Ecol Evol 2:29

    Article  Google Scholar 

  • Gaba S, Gabriel E, Chadœuf J, Bonneu F, Bretagnolle V (2016) Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci Rep 6:30112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaba S, Cheviron N, Perrot T, Piutti S, Gautier JL, Bretagnolle V (2020) Weeds enhance multifunctionality in arable lands in South-West of France. Front Sustain Food Syst 4:71

    Article  Google Scholar 

  • Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869

    Article  PubMed  Google Scholar 

  • Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • Gliessman S (2016) Transforming food systems with agroecology. Agroecol Sustain Food Syst 40:187–189

    Article  Google Scholar 

  • Godfray HCJ (2015) The debate over sustainable intensification. Food Secur 7:199–208

    Article  Google Scholar 

  • Goulson D, Lepais O, O’Connor S, Osborne JL, Sanderson RA, Cussans J et al (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. J Appl Ecol 47:1207–1215

    Article  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  PubMed  Google Scholar 

  • Haan NL, Zhang Y, Landis DA (2020) Predicting landscape configuration effects on agricultural Pest suppression. Trends Ecol Evol 35:359–367

    Article  Google Scholar 

  • Haines-Young R, Potschin M (2010) The links between biodiversity, ecosystem services and human well-being. In: Raffaelli D, Frid C (eds) Ecosystem ecology: a new synthesis. Cambridge University Press, Cambridge, pp 110–139

    Chapter  Google Scholar 

  • Henckel L, Börger L, Meiss H, Gaba S, Bretagnolle V (2015) Organic fields sustain weed metacommunity dynamics in farmland landscapes. Proc R Soc B Biol Sci 282:1–9

    Google Scholar 

  • Henckel L, Meynard CN, Devictor V, Mouquet N, Bretagnolle V (2019) On the relative importance of space and environment in farmland bird community assembly. PLoS One 14:e0213360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzschuh A, Dainese M, González-Varo JP, Mudri-Stojnić S, Riedinger V, Rundlöf M et al (2016) Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol Lett 19:1228–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C et al (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274. 66, 95–96, 191

    Google Scholar 

  • Lampkin N (1990) Farming systems and ecological diversity. In: Organic Farming. Farming Press, Ipswich, pp 574–579

    Google Scholar 

  • Landis DA (2017) Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl Ecol 18:1–12

    Article  Google Scholar 

  • Lévêque C, Pavé A, Abbadie L, Weill A, Vivien F-D (2000) Les zones ateliers, des dispositifs pour la recherche sur l’environnement et les anthroposystèmes. Natures, Sci. Sociétés 8:44–52

    Google Scholar 

  • Marrec R, Badenhausser I, Bretagnolle V, Börger L, Roncoroni M, Guillon N et al (2015) Crop succession and habitat preferences drive the distribution and abundance of carabid beetles in an agricultural landscape. Agric Ecosyst Environ 199:282–289

    Article  Google Scholar 

  • Marrec R, Caro G, Miguet P, Badenhausser I, Plantegenest M, Vialatte A et al (2017) Spatiotemporal dynamics of the agricultural landscape mosaic drives distribution and abundance of dominant carabid beetles. Landsc Ecol 32:2383–2398

    Article  Google Scholar 

  • Maxwell SL, Fuller RA, Brooks TM, Watson JEM (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143

    Article  CAS  PubMed  Google Scholar 

  • McHugh NM, Moreby S, Lof ME, Van der Werf W, Holland JM (2020) The contribution of semi-natural habitats to biological control is dependent on sentinel prey type. J Appl Ecol 57:914–925

    Article  Google Scholar 

  • Montoya D, Haegeman B, Gaba S, de Mazancourt C, Bretagnolle V, Loreau M (2019) Trade-offs in the provisioning and stability of ecosystem services in agroecosystems. Ecol Appl 29:e01853

    Article  PubMed  PubMed Central  Google Scholar 

  • Montoya D, Gaba S, de Mazancourt C, Bretagnolle V, Loreau M (2020) Reconciling biodiversity conservation, food production and farmers’ demand in agricultural landscapes. Ecol Model 416:108889

    Article  Google Scholar 

  • Öckinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59

    Article  Google Scholar 

  • Odoux JF, Aupinel P, Gateff S, Requier F, Henry M, Bretagnolle V (2014) ECOBEE: a tool for long-term honey bee colony monitoring at the landscape scale in West European intensive agroecosystems. J Apic Res 53:57–66

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG et al (2014) EU agricultural reform fails on biodiversity. Science 344:1090–1092

    Article  PubMed  Google Scholar 

  • Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y et al (2018) Biodiversity increases and decreases ecosystem stability. Nature 563:109–112

    Article  CAS  PubMed  Google Scholar 

  • Perrot T, Gaba S, Roncoroni M, Gautier JL, Bretagnolle V (2018) Bees increase oilseed rape yield under real field conditions. Agric Ecosyst Environ 266:39–48

    Article  Google Scholar 

  • Perrot T, Gaba S, Roncoroni M, Gautier JL, Saintilan A, Bretagnolle V (2019) Experimental quantification of insect pollination on sunflower yield, reconciling plant and field scale estimates. Basic Appl Ecol 34:75–84

    Article  Google Scholar 

  • Perrot T, Rusch A, Coux C, Gaba S, Bretagnolle V (2020) Proportion of grassland drives biological pest control services in agricultural landscapes. Front Ecol Evol. in review

    Google Scholar 

  • Petit S, Gaba S, Grison A-L, Meiss H, Simmoneau B, Munier-Jolain N et al (2016) Landscape scale management affects weed richness but not weed abundance in winter wheat fields. Agric Ecosyst Environ 223:41–47

    Article  Google Scholar 

  • Phalan B, Balmford A, Green RE, Scharlemann JPW (2011) Minimising the harm to biodiversity of producing more food globally. Food Policy 36:S62–S71

    Article  Google Scholar 

  • Phalan B, Green RE, Dicks LV, Dotta G, Feniuk C, Lamb A et al (2016) How can higher-yield farming help to spare nature? Science 351:450–451

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J et al (1992) Environmental and economic costs of pesticide use. Bioscience 42:750–760

    Article  Google Scholar 

  • Ponisio LC, M’gonigle LK, Mace KC, Palomino J, De Valpine P, Kremen C (2015) Diversification practices reduce organic to conventional yield gap. Proc R Soc B Biol Sci 282:20141396

    Article  Google Scholar 

  • Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L, Nowakowski M et al (2015) Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc R Soc B Biol Sci 282:20151740

    Article  Google Scholar 

  • Requier F, Odoux JF, Tamic T, Moreau N, Henry M, Decourtye A et al (2015) Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol Appl 25:881–890

    Article  PubMed  Google Scholar 

  • Requier F, Odoux JF, Henry M, Bretagnolle V (2017) The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J Appl Ecol 54:1161–1170

    Article  Google Scholar 

  • Rollin O, Bretagnolle V, Fortel L, Guilbaud L, Henry M (2015) Habitat, spatial and temporal drivers of diversity patterns in a wild bee assemblage. Biodivers Conserv 24:1195–1214

    Article  Google Scholar 

  • Rollin O, Pérez-Méndez N, Bretagnolle V, Henry M (2019) Preserving habitat quality at local and landscape scales increases wild bee diversity in intensive farming systems. Agric Ecosyst Environ 275:73–80

    Article  Google Scholar 

  • Rusch A, Bommarco R, Jonsson M, Smith HG, Ekbom B (2013) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50:345–354

    Article  Google Scholar 

  • Russon H, Woltz J (2015) Movement patterns of carabid beetles between heterogenous crop and noncrop habitats. Mich Entomol Soc 47:186

    Google Scholar 

  • Schellhorn NA, Gagic V, Bommarco R (2015) Time will tell: resource continuity bolsters ecosystem services. Trends Ecol Evol 30:524–530

    Article  PubMed  Google Scholar 

  • Seufert V, Ramankutty N (2017) Many shades of gray—the context-dependent performance of organic agriculture. Sci Adv 3:e1602638

    Article  PubMed  PubMed Central  Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–232

    Article  CAS  PubMed  Google Scholar 

  • Soliveres S, Manning P, Prati D, Gossner MM, Alt F, Arndt H et al (2016) Locally rare species influence grassland ecosystem multifunctionality. Philos Trans R Soc B Biol Sci 371:20150269

    Article  Google Scholar 

  • Tamburini G, De Simone S, Sigura M, Boscutti F, Marini L (2016) Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes. Proc R Soc B Biol Sci 283:20161369

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittonell P (2014) Ecological intensification of agriculture-sustainable by nature. Curr Opin Environ Sustain 8:53–61

    Article  Google Scholar 

  • Todd KJ, Gardiner MM, Lindquist ED (2016) Mass flowering crops as a conservation resource for wild pollinators (Hymenoptera: Apoidea). J Kansas Entomol Soc 89:158–167

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P et al (2012) Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Tuck SL, Winqvist C, Mota F, Ahnström J, Turnbull LA, Bengtsson J (2014) Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol 51:746–755

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkelboom F, Leone M, Jacobs S, Kelemen E, García-Llorente M, Baró F et al (2018) When we cannot have it all: ecosystem services trade-offs in the context of spatial planning. Ecosyst Serv 29C:566–578

    Article  Google Scholar 

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard JM, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14

    Article  Google Scholar 

  • Wardle DA (2016) Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J Veg Sci 27:646–653

    Article  Google Scholar 

  • Willer H, Lernoud J (2019) The world of organic agriculture. Statistics and emerging trends 2019. FiBL, Frick, and, IFOAM – Organics International, Bonn

    Google Scholar 

  • Wilson PJ, Aebischer NJ (1995) The distribution of dicotyledonous arable weeds in relation to distance from the field edge. J Appl Ecol 32:295–310

    Article  Google Scholar 

  • Wintermantel D, Odoux JF, Chadœuf J, Bretagnolle V (2019) Organic farming positively affects honeybee colonies in a flower-poor period in agricultural landscapes. J Appl Ecol 56:1960–1969

    Google Scholar 

Download references

Acknowledgments

The LTSER Zone Atelier “Plaine & Val de Sèvre” is supported by CNRS/INEE, ALLENVI and INRAE. The research in this chapter has been supported by the French Ministry of Ecology project (2017-2020 “Pollinisateurs”), the ANR AGROBIOSE (ANR-13-AGRO-286 0001), the ANR IMAGHO (ANR-18-CE32-0002), the ERANET ECODEAL (FP7 ERA-NET BiodivERsA/FACCE-JPI), ERA-Net BiodivERsA FARMLAND (ANR-11-EBID-0004), the Région Nouvelle Aquitaine ‘Birdland’ and ‘Harmony’ project and the INRAe project “ESPACE” (MP SMACH). We would like to express our thanks to Jean-Luc Gautier, Marilyn Roncoroni, Alexis Saintilan and hundreds of field workers and students over the 27 years who contributed to the monitoring programs. We sincerely thank the local stakeholders, especially farmers, for their collaboration and involvement on the research programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Gaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaba, S., Bretagnolle, V. (2020). Designing Multifunctional and Resilient Agricultural Landscapes: Lessons from Long-Term Monitoring of Biodiversity and Land Use. In: Hurford, C., Wilson, P., Storkey, J. (eds) The Changing Status of Arable Habitats in Europe. Springer, Cham. https://doi.org/10.1007/978-3-030-59875-4_14

Download citation

Publish with us

Policies and ethics