Skip to main content
Log in

Thermodynamic aspects of hydrophobicity and biological QSAR

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A protein contains a large amount of water molecules, and the nature of the interactions of the water molecules with a protein play an important role in the thermodynamics of the ligand binding process. In this paper, thermodynamic aspects of drug-receptor interactions, enthalpy-entropy compensation or reinforcement, hydrophobicity, and biological 2D- and 3D-QSAR are discussed. Comparisons of the thermodynamic QSAR of phenyl esters of N-benzoyl L-alanine in phosphate buffer and pentanol provide useful insight for the ligand-enzyme interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karplus, P.A. and Faerman, C., Curr. Opinion Struct. Biol., 4 (1994) 770.

    Google Scholar 

  2. Ringe, D., Curr. Opinion Struct. Biol., 5 (1995) 825.

    Google Scholar 

  3. Fitzpatrick, P.A., Steinmetz, A.C.U., Ringe, D. and Klibanov, A.M., Proc. Natl. Acad. Sci. USA, 90 (1993) 8653.

    Google Scholar 

  4. Reslow, M., Adlercreutz, P. and Mattiasson, B., Appl. Microbiol. Biotechnol., 26 (1987) 1.

    Google Scholar 

  5. Stevenson, D.E. and Storer, A.C., Biotechnol. Bioeng., 37 (1991) 519.

    Google Scholar 

  6. Allen, K.N., Bellamacina, C.R., Ding, X., Jeffery, C.J., Mattos, C., Petsko, G.A. and Ringe, D., J. Phys. Chem., 100 (1996) 2605.

    Google Scholar 

  7. Kim, K.H., Greco, G. and Novellino, E., in Kubinyi, H., Golkers, G. and Martin, Y.C. (Eds) A Critical Review on Recent CoMFA Applications. 3D QSAR in Drug Design. Recent Advances, Vol. 3. Kluwer Academic Publishers, Dordrecht, 1998, pp. 257-315.

    Google Scholar 

  8. Martin, Y.C., Kim, K.H. and Lin, C.T., in Charton, M. (ed.), Comparative Molecular Field Analysis: CoMFA. Advances in Quantitative Structure-Property Relationships, Vol. 1. JAI Press Inc., Greenwich, Connecticut, 1996, pp. 1-52.

    Google Scholar 

  9. Bohm, H.-J. and Klebe, G., Angew. Chem. Int. Ed. Engl., 35 (1996) 2588.

    Google Scholar 

  10. Cramer, R.D. III, Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  11. Gilli, P., Ferretti, V., Gilli, G. and Borea, P.A., J. Phys. Chem., 98 (1994) 1515.

    Google Scholar 

  12. Hitzemann, R., TIPS, 9 (1988) 408.

    Google Scholar 

  13. Leffler, J.E. and Grunwald, E., Rates and Equilibria of Organic Reactions. Wiley, New York, NY, 1963.

    Google Scholar 

  14. Sleigh, S.H., Seavers, P.R., Wilkinson, A.J., Ladbury, J.E. and Tame, J.R.H., J. Mol. Biol., 291 (1999) 393.

    Google Scholar 

  15. Dunitz, J.D., Chem. Biol., 2 (1995) 709.

    Google Scholar 

  16. Lemieux, R.U., Acc. Chem. Res., 29 (1996) 373.

    Google Scholar 

  17. Rogers, J.A. and Wong, A., J. Pharm., 6 (1980) 339.

    Google Scholar 

  18. Gallicchio, E., Kubo, M.M. and Levy, R.M., J. Am. Chem. Soc., 120 (1998) 4526.

    Google Scholar 

  19. Krug, R.R., Hunter, W.G. and Grieger, R.A., Nature, 261 (1976) 566.

    Google Scholar 

  20. Krug, R.R., Hunter, W.G. and Grieger, R.A., J. Phys. Chem., 80 (1976) 2335.

    Google Scholar 

  21. Krug, R.R., Hunter, W.G. and Grieger, R.A., J. Phys. Chem., 80 (1976) 2341.

    Google Scholar 

  22. Da, Y.-Z., Ito, K. and Fujiwara, H., J. Med. Chem., 35 (1992) 3382.

    Google Scholar 

  23. Nakamura, K., Hayashi, K., Ueda, I. and Fujiwara, H., Chem. Pharm. Bull., 43 (1995) 369.

    Google Scholar 

  24. Selassie, C.D., Gan, W.X., Fung, M. and Shortle, R., in Sanz, J.G.F. and Manaut, F. (eds), Chymotrypsin-ligand interactions in non-aqueous solvents. QSAR and Molecular Modelling: Concepts, Computational Tools and Biological Applications, Proceedings of the 10th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling, Barcelona, September 4-9, 1994. J. R. Pros Science Publishers, Barcelona, 1994, pp. 128-130.

    Google Scholar 

  25. Kim, K.H., Bioorg. Med. Chem., 9 (2001) in press.

  26. Blaney, J.M. and Hansch, C., in Ramsden, C.A. (ed.), Application of Molecular Graphics to the Analysis of Macromolecular Structures. Quantitative Drug Design. Pergamon, Oxford, 1990, pp. 459-496.

    Google Scholar 

  27. Compadre, C.M., Sanzhez, R.I., Bhuvaneswaran, C., Compadre, R.L., Plunkett, D. and Novick, S.G., in Wermuth, C.G. (ed.), Analysis of enzyme-ligand interactions in organic solvents: A QSAR approach. Trends in QSAR and Molecular Modelling 92, Proceedings of the 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modeling. September 7-11, 1992, Strasbourg, France. ESCOM, Leiden, 1993, pp. 112-115.

    Google Scholar 

  28. Leo, A.J., Chem. Rev., 93 (1993) 1281.

    Google Scholar 

  29. Greco, G., Novellino, E. and Martin, Y.C., in Martin, Y.C. and Willet, P. (eds), Approaches to Three-Dimensional Quantitative Structure-Activity Relationships. Designing Bioactive Molecules: Three-Dimensional Techniques and Applications. American Chemical Society, Washington, DC, 1997, pp. 219-252.

    Google Scholar 

  30. Kim, K.H., in Dean, P.M. (ed.), Comparative Molecular Field Analysis (CoMFA). Molecular Similarity in Drug Design. Blackie Academic & Professional, London, 1995, pp. 291-331.

    Google Scholar 

  31. Abraham, D.J. and Kellogg, G.E., in Kubinyi, H. (ed.), Hydrophobic Fields. 3D QSAR in Drug Design. Theory Methods and Applications. ESCOM, Leiden, 1993, pp. 506-522.

    Google Scholar 

  32. Kim, K.H., Med. Chem. Res., 1 (1991) 259.

    Google Scholar 

  33. Cramer III, R.D., DePriest, S.A., Patterson, D.E. and Hecht, P., in Kubinyi, H. (ed.), The Developing Practice of Comparative Molecular Field Analysis. 3D QSAR in Drug Design. ESCOM, Leiden, 1993, pp. 443-485.

    Google Scholar 

  34. GRID program. Molecular Discovery Ltd., West Way House, Elms Parade, Oxford, U.K.

  35. Kim, K.H., Quant. Struct.-Act. Relat., 12 (1993) 232.

    Google Scholar 

  36. Waller, C.L., Quant. Struct.-Act. Relat., 13 (1994) 172.

    Google Scholar 

  37. Kim, K.H., in Kubinyi, H. (ed.), Comparison of Classical and 3D QSAR. 3D QSAR in Drug Design. Theory Methods and Applications. ESCOM, Leiden, 1993, pp. 619.

    Google Scholar 

  38. Klebe, G. and Abraham, U., J. Med. Chem., 36 (1993) 70.

    Google Scholar 

  39. Steinmetz, W.E., Quant. Struct.-Act. Relat., 15 (1996) 1.

    Google Scholar 

  40. Wade, R.C., in Kubinyi, H. (ed.), Molecular Interaction Fields. 3D QSAR in Drug Design. ESCOM, Leiden, 1993, pp. 486-506.

    Google Scholar 

  41. Kim, K.H., Quant. Struct.-Act. Relat., 11 (1992) 127. 380

    Google Scholar 

  42. Kim, K.H., Greco, G., Novellino, E., Silipo, C., Vittoria, A., J. Comput. Aided Mol. Des., 7 (1993) 263.

    Google Scholar 

  43. Kim, K.H., in Wermuth, C.G. (ed.), Use of the hydrogen-bond potential function on comparative molecular field analysis (CoMFA): An extension of CoMFA. Trends in QSAR and Molecular Modelling 92, Proceedings of the 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling. September 7-11, 1992, Strasbourg, France. ESCOM, Leiden, 1993, pp. 245-251.

    Google Scholar 

  44. Klebe, G. and Abraham, U., J. Med. Chem., 36 (1993) 70.

    Google Scholar 

  45. Steinmetz, W.E., Quant. Struct. Act. Relat., 15 (1996) 1.

    Google Scholar 

  46. Wade, R.C., in Kubinyi, H. (ed.), Molecular interaction fields. 3D QSAR in Drug Design. Theory Methods and Applications. ESCOM, Leiden, 1993, pp. 486-506.

    Google Scholar 

  47. Kim, K.H., J. Comput.-Aid. Mol. Design, 9 (1995) 308.

    Google Scholar 

  48. Kim, K.H. and Kim, D.H., Bioorg. Med. Chem., 3 (1995) 1389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K.H. Thermodynamic aspects of hydrophobicity and biological QSAR. J Comput Aided Mol Des 15, 367–380 (2001). https://doi.org/10.1023/A:1011163527770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011163527770

Navigation