Skip to main content

Advertisement

Log in

Rat and Rabbit Plasma Distribution of Free and Chylomicron-Associated BIRT 377, a Novel Small Molecule Antagonist of LFA-1-Mediated Cell Adhesion

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objectives of this study are to determine the plasma distribution of free and chylomicron-associated BIRT 377 within rats and rabbits.

Methods. For the rat studies free and chylomicron-associated BIRT 377 was incubated in plasma from CD 1 non-fasted rats for 60 minutes at 37°C. Following incubation the plasma was separated into its lipoprotein and lipoprotein-deficient plasma (LPDP) fractions by three different methods and analyzed for BIRT 377 content by HPLC. For the rabbit studies New Zealand fasted white rabbits (3 kg; n = 4) were administered an intravenous dose of free BIRT 377 (1 mg/kg). Following administration, serial blood samples were obtained and the plasma was analyzed for BIRT 377. The plasma collected at the 0.083-h time point was separated into each of its lipoprotein fractions and analyzed for BIRT 377.

Results. 37.8 ± 1.2% of the original drug amount incubated in rat plasma was recovered within the lipoprotein-rich fraction. 41.5 ± 0.4% of the original chylomicron-associated drug concentration incubated was recovered within the lipoprotein-rich fraction. The percentage of drug recovered within the TRL fraction was significantly greater following the incubation of chylomicron-associated BIRT 377 compared to free BIRT 377. In addition, BIRT 377 apparently follows a two-compartment pharmacokinetic model following single intravenous dose administration to rabbits.

Conclusions. These findings suggest that plasma lipoprotein binding of BIRT 377 is evident and may be a factor in evaluating the pharmacological fate of this drug when administered to patients that exhibit changes in their plasma lipoprotein lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. M. Wasan and S. M. Cassidy. Role of Plasma Lipoproteins in Modifying the Biological Activity of Hydrophobic Drugs. J. Pharm. Sci. 87:411-424 (1998).

    Google Scholar 

  2. R. A. Davis and J. E. Vance. Structure, assembly and secretion of lipoproteins. In D. E. Vance and J. E. Vance (eds.), Biochemistry of Lipids, Lipoproteins and Membranes, Elsevier, New York, 1996 pp. 473-493.

    Google Scholar 

  3. M. Le Maire and J. P. Tillement. Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporin A in the blood. J. Pharm. Pharmacol. 34:715-718 (1982).

    Google Scholar 

  4. R. F. Aten, T. R. Kolodecik, and H. R. Behrman. Ovarian vitamin E accumulation: Evidence for a role of lipoproteins. Endocrinology 135:533-539 (1994).

    Google Scholar 

  5. T. A. Ho Ngoc-Ta and G. Sirois. Quinidine and propanolol binding to very low and low-density lipoproteins of human plasma. Can. J. Phys. Pharmacol. 62:589-595 (1984).

    Google Scholar 

  6. J. Oravcova, D. Sojkova, N. Fetkovska, and T. Trnovec. Factors influencing isradipine and amlodipine binding to human plasma lipoproteins. Blood Pressure 1(S):61-64 (1994).

    Google Scholar 

  7. Y. Ridente, J. Aubard, and J. Bolard. Absence in amphotericin B-spiked human plasma of the free monomeric drug, as detected by SERS. FEBS Letters 446:283-286 (1999).

    Google Scholar 

  8. K. M. Wasan, M. Ramaswamy, M. P. McIntosh, C. J. H. Porter, and W. N. Charman. Differences in the lipoprotein distribution of halofantrine are regulated by lipoprotein apolar lipid and protein concentration and lipid transfer protein I activity: In vitro studies in normolipidemic and dyslipidemic human plasmas. J. Pharm. Sci. 88:185-190 (1999).

    Google Scholar 

  9. E. Pike, B. Skuterud, P. Kierulf, and P. K. Lunde. Significance of lipoproteins in serum binding variations of amitriptyline, nortriptyline and quinidine. Clin. Pharm. Ther. 32:599-606 (1982).

    Google Scholar 

  10. K. M. Wasan and J. S. Conklin. Enhanced amphotericin B nephrotoxicity in intensive care patients with elevated levels of low-density lipoprotein cholesterol. Clin. Infect. Dis. 24:78-80 (1997).

    Google Scholar 

  11. K. M. Wasan, G. A. Brazeau, A. Keyhani, A. C. Hayman, and G. Lopez-Berestein. Role of liposome composition and temperature in distribution of amphotericin B in serum lipoproteins. Antimicrob. Agents Chemother. 37:246-250 (1993).

    Google Scholar 

  12. J. Brajtburg, S. Elberg, J. Bolard, and G. Medoff. Interaction of plasma proteins and lipoproteins with amphotericin B. J. Infect. Dis. 149:986-992 (1984).

    Google Scholar 

  13. K. M. Wasan, R. E. Morton, M. G. Rosenblum, and G. Lopez-Berestein. Decreased toxicity of liposomal amphotericin B due to association of amphotericin B with high density lipoproteins: Role of lipid transfer protein. J. Pharm. Sci. 83:1006-1010 (1994).

    Google Scholar 

  14. C. Grunfeld, M. Pang, W. Doerrler, J. K. Shigenaga, P. Jensen, and K. R. Feingold. Lipids, lipoproteins, triglyceride clearance and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J. Clin. Endocrinology Metab. 74:2045-2051 (1992).

    Google Scholar 

  15. K R. Feingold, R. M. Krauss, M. Pang, W. Doerrler, P. Jensen, and C. Grunfeld. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B. J. Clin. Endocrinology Metab. 76:1423-1431 (1993).

    Google Scholar 

  16. S. B. Kritchevsky, T. C. Wilcosky, D. L. Morris, et al. Changes in plasma lipid and lipoprotein cholesterol and weight prior to the diagnosis of cancer. Cancer Res. 51:3198-3203 (1991).

    Google Scholar 

  17. S. Umeki. Decreases in serum cholesterol levels in advanced lung cancer. Respiration 60:178-181 (1993).

    Google Scholar 

  18. S. Vitols, G. Gahrton, M. Bjorkholm, and C. Peterson. Hypocholesterolemia in malignancy due to elevated low-density lipoprotein receptor activity in tumor cells: Evidence from studies in patients with leukemia. Lancet 5:1150-1154 (1985).

    Google Scholar 

  19. F. C. Chao, B. Efron, and P. Wolf. The possible prognostic usefulness of assessing serum proteins and cholesterol in malignancy. Cancer 35:1223-1229 (1975).

    Google Scholar 

  20. K. M. Wasan, K. Vadiei, G. Lopez-Berestein, and D. R. Luke. Pharmacokinetics, tissue distribution, and toxicity of free and liposomal amphotericin B. J. Infect. Dis. 161:562-566 (1990).

    Google Scholar 

  21. K. M. Wasan and J. S. Conklin. Evaluation of Renal Toxicity and Antifungal Activity of Free and Liposomal Amphotericin B following a single intravenous dose to diabetic rats with systemic candidiasis. Antimicrob. Agents Chemother. 40:1806-1810 (1996).

    Google Scholar 

  22. M. H. Koldin, G. S. Kobayashi, J. Brajtburg, and G. Medoff. Effects of elevation of serum cholesterol and administration of amphotericin B complexed to lipoproteins on amphotericin Binduced toxicity to rabbits. Antimicrob. Agents Chemother. 28:144-145 (1985).

    Google Scholar 

  23. K. M. Wasan, A. L. Kennedy, S. M. Cassidy, M. Ramaswamy, L. Holtorf, J. W. L. Chou, and P. H. Pritchard. Pharmacokinetics, distribution in serum lipoprotein and tissues, and renal toxicities of amphotericin B and amphotericin B lipid complex in a hypercholesterolemic rabbit model: Single-Dose Studies. Antimicrob. Agents Chemother. 42:3146-3152 (1998).

    Google Scholar 

  24. M. Krieger. The use of amphotericin B to detect inhibitors of cellular cholesterol biosynthesis. Anal Biochem. 135:383-391 (1983).

    Google Scholar 

  25. K. M. Wasan, M. G. Rosenblum, L. Cheung, and G. Lopez-Berestein. Influence of lipoproteins on renal cytotoxicity and antifungal activity of amphotericin B. Antimicrob. Agents Chemother. 38:223-227 (1994).

    Google Scholar 

  26. G. Lopez-Berestein. Liposomes as carriers of antifungal drugs. Annals New York Acad Sci. 544:590-597 (1988).

    Google Scholar 

  27. T. A. Kelly, D. D. Jeanfavre, D. W. McNeil, J. R. Woska, P. L. Reilly, E. A. Mainolfi, K. M. Kishimoto, G H. Nabozny, R. Zinter, B. J. Bormann, and R. Rothlein. Cutting edge: A small molecule antagonist of LFA-1-mediated cell adhesion. J. Immunol. 163:5173-5177 (1999).

    Google Scholar 

  28. K. M. Wasan, S. M. Cassidy, M. Ramaswamy, A. Kennedy, F. W. Strobel, S. P. Ng, and T. Y. Lee. A comparison of step-gradient and sequential density ultracentrifugation and the use of lipoprotein deficient plasma controls in determining the plasma lipoprotein distribution of lipid-associated nystatin and cyclosporine. Pharm. Res. 16:165-169 (1999).

    Google Scholar 

  29. M. I. Mackness and P. N. Durrington. Lipoprotein separation and analysis for clincial studies. In C. A. Converse and E. R. Skinner (eds.), Lipoprotein Analysis: A Practical Approach, Oxford University Press, New York, 1992 pp. 11-14.

    Google Scholar 

  30. T. J. Walsh, J. Bacher, and P. A. Pizzo. Chronic silastic central venous catheterization for reduction, maintenance and support of persistent granulocytopenia in rabbits. Lab. Anim. Sci. 38:467-471 (1988).

    Google Scholar 

  31. L. Shargel and A. B. C. Yu. Multicompartment Models. In L. Shargel and A. B. C. Yu (eds.), Applied Biopharmaceutics and Pharmacokinetics, Appleton & Lange, Norwalk, CT, 1985 pp. 51-67.

    Google Scholar 

  32. J. H. Zar. Multiway Factorial Analysis of Variance. In J. H. Zar (ed.), Biostatistical Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984 pp. 244-252.

    Google Scholar 

  33. Y. C. Ha and P. J. Barter. Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp. Biochem. Physiol. 71:265-269 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasan, K.M., Ramaswamy, M., Holtorf, L. et al. Rat and Rabbit Plasma Distribution of Free and Chylomicron-Associated BIRT 377, a Novel Small Molecule Antagonist of LFA-1-Mediated Cell Adhesion. Pharm Res 18, 510–519 (2001). https://doi.org/10.1023/A:1011062512712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011062512712

Navigation