Skip to main content
Log in

Identification of functional PDZ domain binding sites in several human proteins

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

TIP-15 was previously identified as a cellular protein that can bind to the C-terminal end of the HTLV-1 Tax protein via its two PDZ domains. The sequence of the N-terminal part of TIP-15 is identical to that of the synaptic protein PSD-95. Both proteins are likely to be produced from the same gene by alternative splicing. Whereas expression of the PSD-95 mRNA was detected only with brain RNAs, that of TIP-15 was detected with RNAs from thymus, brain, skeletal muscle and Jurkat cells. The TIP-15 protein exhibits an apparent molecular weight of 40 kD and is weakly expressed in T cell lines. A two-hybrid screen performed with TIP-15 as bait revealed the presence of a PDZ binding site (PDZ-BS) in the following proteins: Lysyl tRNA synthetase, 6-phosphogluconolactonase (6-GPL), Stress-activated protein kinase 3 (SAPK3), NET-1, Diacylglycerol kinase zeta, MTMR1, MCM7, and hSec8. The sequence at the C-terminal ends of these proteins matches the X-S/T-X-V-COOH consensus previously defined for PDZ-BSs, with the exception of 6-GPL and SAPK3 which include a leucine as the C-terminal residue. For Lysyl tRNA synthetase, NET1, MTMR1 and hSec8, binding to TIP-15 was confirmed by co-immunoprecipitation experiments performed with the extracts of transfected COS7 cells. These results show the existence of functional PDZ-BSs in these proteins, but future studies will be necessary to establish whether or not TIP-15 represents a physiological partner. The significance of the presence of a PDZ-BS in these various proteins is discussed with respect to their function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ponting CP (1997) Protein Sci. 6: 464–468.

    Google Scholar 

  2. Fanning AS & Anderson JM (1999) Curr. Opin. Cell. Biol. 11: 432–439.

    Google Scholar 

  3. Kim E, Niethammer M, Rothschild A, Jan YN & Sheng M (1995) Nature 378: 85–88.

    Google Scholar 

  4. Kornau HC, Schenker LT, Kennedy MB & Seeburg PH (1995) Science 269: 1737–1740.

    Google Scholar 

  5. Ranganathan R & Ross EM (1997) Curr. Biol. 7: R770–R7703.

    Google Scholar 

  6. Thomas MK, Yao KM, Tenser MS, Wong GG & Habener JF (1999) Mol. Cell. Biol. 19: 8492–8504.

    Google Scholar 

  7. Lee SS, Weiss RS & Javier RT (1997) Proc. Natl. Acad. Sci. USA 94: 6670–6675.

    Google Scholar 

  8. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T & Ishibashi M (1997) Proc. Natl. Acad. Sci. USA 94: 11612–11616.

    Google Scholar 

  9. Rousset R, Fabre S, Desbois C, Bantignies F & Jalinot P (1998) Oncogene 16: 643–654.

    Google Scholar 

  10. Durfee T, Becherer K, Chen PL, Yeh SH., Yang Y., Kilburn AE, Lee WH & Elledge SJ (1993) Genes Dev. 7: 555–569.

    Google Scholar 

  11. Gietz D, St. Jean A, Woods RA & Schiestl RH (1992) Nucleic Acids Res. 20: 1425–1425.

    Google Scholar 

  12. Cho KO, Hunt CA & Kennedy MB (1992) Neuron 9: 929–942.

    Google Scholar 

  13. Topham MK, Bunting M, Zimmerman GA, McIntyre TM, Blackshear PJ & Prescott SM (1998) Nature 394: 697–700.

    Google Scholar 

  14. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM & Cantley LC (1997) Science 275: 73–77.

    Google Scholar 

  15. Lechner C, Zahalka MA, Giot JF, Moller NP & Ullrich A (1996) Proc. Natl. Acad. Sci. USA 93: 4355–4359.

    Google Scholar 

  16. Li Z, Jiang Y, Ulevitch RJ & Han J (1996) Biochem. Biophys. Res. Commun. 228: 334–340.

    Google Scholar 

  17. Mertens S, Craxton M & Goedert M (1996) FEBS Lett. 383: 273–276.

    Google Scholar 

  18. Hasegawa M, Cuenda A, Spillantini MG, Thomas GM, Buee-Scherrer V, Cohen P & Goedert M (1999) J. Biol. Chem. 274: 12626–12631.

    Google Scholar 

  19. Chan AM, Takai S, Yamada K & Miki T (1996) Oncogene 12: 1259–1266.

    Google Scholar 

  20. Alberts AS & Treisman R (1998) Embo J. 17: 4075–4085.

    Google Scholar 

  21. Reynaud C, Fabre S & Jalinot P (2000) J. Biol. Chem. 275: 33962–33968.

    Google Scholar 

  22. Topham MK & Prescott SM (1999) J. Biol. Chem. 274: 11447–11450.

    Google Scholar 

  23. Laporte J, Biancalana V, Tanner SM, Kress W, Schneider V, Wallgren-Pettersson C, Herger F, Buj-Bello A, Blondeau F, Liechti-Gallati S & Mandel JL (2000) Hum. Mutat. 15: 393–409.

    Google Scholar 

  24. Kioschis P, Wiemann S, Heiss NS, Francis F, Gotz C, Poustka A, Taudien S, Platzer M, Wiehe T, Beckmann G, Weber J, Nordsiek G & Rosenthal A (1998) Genomics 54: 256–66.

    Google Scholar 

  25. Laporte J, Blondeau F, Buj-Bello A, Tentler D, Kretz C, Dahl N & Mandel JL (1998) Hum. Mol. Genet. 7: 1703–1712.

    Google Scholar 

  26. Tye BK (1999) Annu. Rev. Biochem. 68: 649–686.

    Google Scholar 

  27. Aparicio OM, Weinstein DM & Bell SP (1997) Cell 91: 59–69.

    Google Scholar 

  28. Tanaka T, Knapp D & Nasmyth K (1997) Cell 90: 649–660.

    Google Scholar 

  29. Ting AE, Hazuka CD, Hsu SC, Kirk MD, Bean AJ & Scheller RH (1995) Proc. Natl. Acad. Sci. USA 92: 9613–9617.

    Google Scholar 

  30. Hsu SC, Ting AE, Hazuka CD, Davanger S, Kenny JW, Kee Y & Scheller RH (1996) Neuron 17: 1209–1219.

    Google Scholar 

  31. Butz S, Okamoto M & Sudhof TC (1998) Cell 94: 773–782.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabre, S., Reynaud, C. & Jalinot, P. Identification of functional PDZ domain binding sites in several human proteins. Mol Biol Rep 27, 217–224 (2000). https://doi.org/10.1023/A:1011008313677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011008313677

Navigation