Skip to main content
Log in

SWKB Approach to Confined Isospectral Potentials

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Recently we had formulated the supersymmetric Wentzel–Kramers–Brillouin (SWKB) quantization rule for one-dimensional confined quantum systems and applied the same to two trigonometric potentials, tangentially limited by infinite walls at x=0 and x=L, viz., V(x)=V 0 cot2x/L) and the Pöschl–Teller potential, V(x)=V 01 cosec2({πx/(2L))}+V 02sec 2x/(2L)). Both the potentials have received quite a lot of attention by various authors because of their importance in molecular physics. Though these potentials have been studied in the framework of WKB, BS (Bohr–Sommerfeld), mBS (matrix formulation of BS) formalisms, it was observed that the supersymmetric approach not only rendered the calculations simpler and more transparent, it also reproduced the exact analytical energies in both the cases.

In this study, we shall generate isospectral Hamiltonians of the above potentials with the help of a modified form of Darboux's theorem. We shall show that though the new potentials look different from the original ones, and have different eigenfunctions, they too, are confined in the same region of space, and share the same energy spectrum as their original counterparts. This may be of substantial importance in determining the energy spectrum of highly non-trivial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Jacak, P. Hawrylak and A. Wójs, Quantum Dots (Springer, 1997).

  2. D.M. Larsen and S.Y. Mc Cann, Phys. Rev. B 45 (1992) 3485–3488; Phys. Rev. B 46 (1992) 3966–3970.

    Google Scholar 

  3. J.W. Brown and H.N. Spector, J. Appl. Phys. 59 (1986) 1179–1180; Phys. Rev. B 35 (1987) 3009–3012.

    Google Scholar 

  4. S. Chaudhuri, Phys. Rev. B 28 (1983) 4480–4488.

    Google Scholar 

  5. M.W. Lin and J.J. Quinn, Phys. Rev. B 31 (1985) 2348–2352.

    Google Scholar 

  6. J.L. Marin and S.A. Cruz, Amer. J. Phys. 59 (1991) 931–935.

    Google Scholar 

  7. J.-L. Zhu, J.-H. Zhao and J.-J. Xiong, J. Phys. Condens. Matter 6 (1994) 5097–5103.

    Google Scholar 

  8. J.-L. Zhu and Xi Chen, J. Phys. Condens. Matter 6 (1994) L123–L126.

    Google Scholar 

  9. M. El-Said, J. Physique I 5 (1995) 1027–1036.

    Google Scholar 

  10. T. Garm, J. Phys. Condens. Matter 8 (1996) 5725–5735.

    Google Scholar 

  11. J.-L. Zhu, J.-Z. Yu, Z.-Q. Li and Y. Kawazoe, J. Phys. Condens. Matter 8 (1996) 7857–7862.

    Google Scholar 

  12. C. Zicovich-Wilson, W. Jaskólski and J.H. Planelles, Int. J. Quant. Chem. 54 (1995) 61–72.

    Google Scholar 

  13. C. Zicovich-Wilson, W. Jaskólski and J.H. Planelles, Int. J. Quant. Chem. 50 (1994) 429–444.

    Google Scholar 

  14. S.A. Cruz, E. Ley-Koo, J.L. Marin and A. Taylor Armitage, Int. J. Quant. Chem. 54 (1995) 3–11.

    Google Scholar 

  15. C. Zicovich-Wilson, A. Corma and P. Viruela, J. Phys. Chem. 98 (1994) 10863–10870.

    Google Scholar 

  16. S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey and S. Charbonneau, Science 274 (1997) 1350.

    Google Scholar 

  17. A. Sinha and R. Roychoudhury, Int. J. Quant. Chem. 73 (1999) 497–504.

    Google Scholar 

  18. A. Sinha and R. Roychoudhury, J. Phys. B: At. Mol. Opt. Phys. 33 (2000) 1463–1468.

    Google Scholar 

  19. C.J.H. Schutte, The Theory of Molecular Spectroscopy, Vol. 1 (North-Holland, Amsterdam, 1976).

    Google Scholar 

  20. M.A.F. Gomes and S.K. Adhikari, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 5987–5997.

    Google Scholar 

  21. N. Nag and R. Roychoudhury, J. Phys. A: Math. Gen. 28 (1995) 3525–3532.

    Google Scholar 

  22. A. Sinha, R. Roychoudhury and Y.P. Varshni, Can. J. Phys. 74 (1996) 39–42.

    Google Scholar 

  23. I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New York, 1992).

    Google Scholar 

  24. S. Flugge, Practical Quantum Mechanics, Vol. 1 (Springer, Berlin, 1976).

    Google Scholar 

  25. I.I. Gol'dman and V.D. Krivchenkov, Problems in Quantum Mechanics (Dover, New York, 1993).

    Google Scholar 

  26. P.A. Deift, Duke Math. J. 45 (1978) 267–270.

    Google Scholar 

  27. D. Baye, Phys. Rev. Lett. 58 (1987) 2738–2739.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, A., Nag, N. SWKB Approach to Confined Isospectral Potentials. Journal of Mathematical Chemistry 29, 267–279 (2001). https://doi.org/10.1023/A:1010995102402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010995102402

Navigation