Skip to main content
Log in

Exact solutions for bound states of nonrelativistic \({{\mathcal {PT}}}\)-symmetric potentials by using SUSYQM approach: quadratic potential and hyperbolic Schiöberg-type potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, the exact solutions of the bound states of the two \({{\mathcal {PT}}}\)-symmetric potentials: quadratic and hyperbolic Schiöberg-type potentials for the one-dimensional Schrödinger equation are obtained by using the SUSYQM approach. Solving the Schrödinger wave equations, the real energy eigenvalues and normalized wave functions are obtained. Some special cases of interest are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C M Bender and S Boettcher Phys. Rev. Lett. 80 5243 (1998)

    ADS  MathSciNet  Google Scholar 

  2. C M Bender and S Boettcher J. Phys. A Math. Gen. 31 L273 (1998)

    ADS  Google Scholar 

  3. C M Bender Rep. Prog. Phys. 70 947 (2007)

    ADS  Google Scholar 

  4. S Weigert Phys. Rev. A 68 062111 (2003)

    ADS  MathSciNet  Google Scholar 

  5. A Mostafazadeh J. Math. Phys. 43 205 (2002)

    ADS  MathSciNet  Google Scholar 

  6. A Mostafazadeh Mod. Phys. Lett. A 17 1973 (2002)

    ADS  Google Scholar 

  7. A Mostafazadeh Int. J. Geom. Methods Mod. Phys. 7 1191 (2010)

    MathSciNet  Google Scholar 

  8. A Guo, G J Salamo, D Duchesne, R Morandotti, M Volatier-Ravat, V Aimez, G A Siviloglou and D N Christodoulides Phys. Rev. Lett. 103 093902 (2009)

    ADS  Google Scholar 

  9. C E Rüter, K G Makris, R El-Ganainy, D N Christodoulides, M Segev and D Kip Nat. Phys. 6 192 (2010)

    Google Scholar 

  10. A Regensburger, C Bersch, M A Miri, G Onishchukov, D N Christodoulides and U. Peschel Nature 488 167 (2012)

    ADS  Google Scholar 

  11. B Peng, S K Özdemir, F Lei, F Monifi, M Gianfreda, G L Long and S Fan, Nat. Phys. 10 394 (2014)

    Google Scholar 

  12. Y Liu, T Hao, W Li, J Capmany, N Zhu, and M. Li Light Sci. Appl. 7 38 (2018)

    ADS  Google Scholar 

  13. J Schindler, A Li, M C Zheng, F M Ellis and T Kottos Phys. Rev. A 84 040101 (2011)

    ADS  Google Scholar 

  14. R Fleury, D Sounas and A Alù Nat. Commun. 6 5905 (2015)

    ADS  Google Scholar 

  15. V V Konotop and B I Mantsyzov Opt. Express 24 26146 (2016)

    ADS  Google Scholar 

  16. Z Liu, Q Zhang, F Qin, Y Chen and J J Xiao, Phys. Rev. A 98 043844 (2018)

    ADS  Google Scholar 

  17. H Zhou, J Y Lee, S Liu and B Zhen, Optica 6 190 (2019)

    ADS  Google Scholar 

  18. M Znojil Phys. Lett. A 264 108 (1999)

    ADS  MathSciNet  Google Scholar 

  19. M Znojil Phys. Lett. A 259 220 (1999)

    ADS  MathSciNet  Google Scholar 

  20. G Lévai Phys. Lett. A 372 6484 (2008)

    ADS  MathSciNet  Google Scholar 

  21. G Lévai and E Magyari J. Phys. A Math. Theor. 42 195302 (2009)

    ADS  Google Scholar 

  22. M Znojil Phys. Lett. A 285 7 (2001)

    ADS  MathSciNet  Google Scholar 

  23. F Cannata, M Ioffe, R Roychoudhury and P Roy Phys. Lett. A 281 305 (2001)

    ADS  MathSciNet  Google Scholar 

  24. B Bagchi, F Cannata and C Quesne Phys. Lett. A 269 79 (2000)

    ADS  MathSciNet  Google Scholar 

  25. M Znojil J. Phys. A Math. Gen. 33 4561 (2000)

    ADS  Google Scholar 

  26. B Bagchi, C Quesne and M Znojil Mod. Phys. Lett. A 16 2047 (2001)

    ADS  Google Scholar 

  27. B. Bagchi and R. Roychoudhury J. Phys. A Math. Gen. 33 L1 (2000)

    ADS  Google Scholar 

  28. Z Ahmed Phys. Lett. A 282 343 (2001)

    ADS  MathSciNet  Google Scholar 

  29. G Lévai, F Cannata and A Ventura Phys. Lett. A 300 271 (2002)

    ADS  MathSciNet  Google Scholar 

  30. G Lévai Int. J. Theor. Phys. 50 997 (2011)

    Google Scholar 

  31. Z Ahmed, D Ghosh, J A Nathanc and G Parkar Phys. Lett. A 379 2424 (2015)

    ADS  Google Scholar 

  32. B Bagchi and C Quesne J. Phys. A Math. Theor. 43 305301 (2010)

    Google Scholar 

  33. R K Yadav, A Khare, B Bagchi, N Kumari and B P Mandal J. Math. Phys. 57 062106 (2016)

    ADS  MathSciNet  Google Scholar 

  34. W C Qiang, G H Sun and S H Dong Ann. Phys. (Berlin) 524, 360 (2012)

    ADS  Google Scholar 

  35. N Zaghou, F Benamira and L Guechi Eur. Phys. J. Plus. 40 132 (2017)

    Google Scholar 

  36. C S Jia and A de Souza Dutra J. Phys. A Math. Gen. 39, 11877 (2006)

    ADS  Google Scholar 

  37. C S Jia, J Y Liu, P Q Wang and C S Che Phys. Lett. A 369 274 (2007)

    ADS  Google Scholar 

  38. A Sinha and P Roy Mod. Phys. Lett. A 20 2377 (2005)

    ADS  Google Scholar 

  39. O Mustafa and S.H. Mazharimousavi Int. J. Theor. Phys. 47 1112 (2008)

    MathSciNet  Google Scholar 

  40. C S Jia, P Q Wang, J Y Liu and S He Int. J. Theor. Phys. 47 2513 (2008)

    Google Scholar 

  41. L B Castro Phys. Lett. A 375 2510 (2011)

    ADS  MathSciNet  Google Scholar 

  42. A F Nikiforov and V B Uvarov Special Functions of Mathematical Physics (Basel: Birkhäuser) (1988)

    MATH  Google Scholar 

  43. Z Q Ma and B W Xu Int. J. Mod. Phys. E 14 599 (2005)

    ADS  Google Scholar 

  44. Z Q Ma and B W Xu Europhys. Lett. 69 685 (2005)

    ADS  Google Scholar 

  45. Z Q Ma, A Gonzalez-Cisneros, B W Xu and S H Dong Phys. Lett. A 371 180 (2007)

    ADS  MathSciNet  Google Scholar 

  46. L Infeld and T E Hull Rev. Mod. Phys. 23 21 (1951)

    ADS  Google Scholar 

  47. S H Dong Factorization Method in Quantum Mechanics (Dordrecht: Springer) (2007)

    MATH  Google Scholar 

  48. H Ciftci, R L Hall and N Saad J. Phys. A Math. Gen. 38 1147 (2005)

    ADS  Google Scholar 

  49. F Cooper, A Khare and U P Sukhatme Supersymmetry in Quantum Mechanics (World Scientific: Singapore) (2001)

    MATH  Google Scholar 

  50. F Cooper, A Khare and U P Sukhatme Phys. Rep. 251 267 (1995)

    ADS  MathSciNet  Google Scholar 

  51. L H Zhang, X P Li and C S Jia Int. J. Quantum Chem. 111 1870 (2011)

    Google Scholar 

  52. H Hassanabadi, L L Lu, S Zarrinkamar, G H Liu and H Rahimov Acta Phys. Pol. A 122 1111 (2012)

    Google Scholar 

  53. C A Onate, K J Oyewumi and B J Falaye Few-Body Syst. 55 61 (2014)

    ADS  Google Scholar 

  54. C A Onate and J O Ojonubah J. Theor. Appl. Phys. 10 21 (2016)

    ADS  Google Scholar 

  55. W C Qiang and S H Dong Phys. Scr. 72 127 (2005)

    ADS  Google Scholar 

  56. C S Jia, J Y Liu, P Q Wang and X Lin Int. J. Theor. Phys. 48 2633 (2009)

    Google Scholar 

  57. G F Wei, G H Sun and S H Dong Appl. Math. Comput. 218 11171 (2012)

    MathSciNet  Google Scholar 

  58. H Hassanabadi, E Maghsoodi, S Zarrinkamar and H Rahimov Can. J. Phys. 90 633 (2012)

    ADS  Google Scholar 

  59. E Maghsoodi, H Hassanabadi and O Aydoğdu Phys. Scr. 86 015005 (2012)

    ADS  Google Scholar 

  60. E Maghsoodi, H Hassanabadi and S Zarrinkamar Few-Body Syst. 53 525 (2012)

    ADS  Google Scholar 

  61. A N Ikot, E Maghsoodi, E J Ibanga, S Zarrinkamar and H Hassanabadi Chin. Phys. B 22 120302 (2013)

    Google Scholar 

  62. A N Ikot, E Maghsoodi, S Zarrinkamar, N Salehi and H Hassanabadi Int. J. Mod. Phys. E 22 1350052 (2013)

    ADS  Google Scholar 

  63. A N Ikot, E Maghsoodi, S Zarrinkamar and H Hassanabadi Indian J. Phys. 88 283 (2014)

    ADS  Google Scholar 

  64. L E Gendenshtein JETP Lett. 38 356 (1983)

    ADS  Google Scholar 

  65. R Dutt, A Khare and U P Sukhatme Phys. Lett. B 181 295 (1986)

    ADS  Google Scholar 

  66. J W Dabrowska, A Khare and U P Sukhatme J. Phys. A Math. Gen. 21 L195 (1988)

    ADS  Google Scholar 

  67. I S Gradshteyn and I M Ryzhik Tables of Integrals, Series and Products (New York: Academic Press) (2007)

    MATH  Google Scholar 

  68. D Schiöberg Mol. Phys. 59 1123 (1986)

    ADS  Google Scholar 

  69. G Pöschl and E Teller Z. Phys. 83 143 (1933)

    ADS  Google Scholar 

  70. M Abramowitz and I Stegun Handbook of Mathematical Functions (New York: Dover) (1964)

    MATH  Google Scholar 

  71. M M Nieto Phys. Rev. A 17 1273 (1978)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the referees for their comments and suggestions. They also thank the Algerian government for the financial assistance allocated within the framework of PRFU Project under the code B00L02UN250120180018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zaghou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaghou, N., Benamira, F. & Guechi, L. Exact solutions for bound states of nonrelativistic \({{\mathcal {PT}}}\)-symmetric potentials by using SUSYQM approach: quadratic potential and hyperbolic Schiöberg-type potential. Indian J Phys 95, 1445–1452 (2021). https://doi.org/10.1007/s12648-020-01809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01809-0

Keywords

Navigation