Skip to main content
Log in

IL-5 Induces Proliferation and Activation of Microglia via an Unknown Receptor

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

While the effects of interleukin-3 (IL-3) and granulocyte macrophage-colony stimulating factor (GM-CSF) on microglia are well documented, very little is known about the effects of a related cytokine, interleukin-5 (IL-5). We therefore undertook studies to determine how IL-5 alters various aspects of microglial functioning. Treatment of microglia with IL-5 resulted in the induction of proliferation at levels similar to those induced by GM-CSF. IL-5 also increased cellular metabolism of microglial cells. To determine whether increased metabolism correlated with activation of microglia, we measured levels of nitrite, a breakdown product of nitric oxide. Treatment of microglial cultures with IL-5 increased nitrite levels, while GM-CSF treatment had no effect. Treatment of microglia with IL-5 did not cause activation of the signal transduction pathways linked to the classical IL-5 receptor, STAT5A/5B and ERK1 and ERK2. It is therefore likely that the effects of IL-5 on microglia are not mediated via the classical IL-5 receptor, but rather via a novel receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ling, E. A. and Wong, W. C. 1993. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18.

    Google Scholar 

  2. Gehrmann, J., Matsumoto, Y., and Kreutzberg, G. W. 1995. Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev. 20:269–287.

    Google Scholar 

  3. Frei, K., Bodmer, S., Schwerdel, C., and Fontana, A. 1986. Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J. Immunol. 137:3521–3527.

    Google Scholar 

  4. Ganter, S., Northoff, H., Männel, D., and Gebicke-Härter, P. J. 1992. Growth control of cultured microglia. J. Neurosci. Res. 33:218–230.

    Google Scholar 

  5. Giulian, D. and Ingeman, J. E. 1988. Colony-stimulating factors as promoters of ameboid microglia. J. Neurosci. 8:4707–4717.

    Google Scholar 

  6. Kloss, C. U., Kreutzberg, G. W., and Raivich, G. 1997. Proliferation of ramified microglia on an astrocyte monolayer: characterization of stimulatory and inhibitory cytokines. J. Neurosci. Res. 49:248–254.

    Google Scholar 

  7. Lee, S. C., Liu, W., Brosnan, C. F., and Dickson, D. W. 1994. GM-CSF promotes proliferation of human fetal and adult microglia in primary cultures. Glia 12:309–318.

    Google Scholar 

  8. Suzumura, A., Sawada, M., Yamamoto, H., and Marunouchi, T. 1990. Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol. 30:111–120.

    Google Scholar 

  9. Hayashi, M., Dorf, M. E., and Abromson-Leeman, S. 1993. Granulocyte-macrophage colony stimulating factor inhibits class II major histocompatibility complex expression and antigen presentation by microglia. J. Neuroimmunol. 48:23–32.

    Google Scholar 

  10. Fischer, H. G., Bielinsky, A. K., Nitzgen, B., Däubener, W., and Hadding, U. 1993. Functional dichotomy of mouse microglia developed in vitro: differential effects of macrophage and granulocyte/macrophage colony-stimulating factor on cytokine secretion and antitoxoplasmic activity. J. Neuroimmunol. 45:193–201.

    Google Scholar 

  11. Imamura, K., Suzumura, A., Sawada, M., Mabuchi, C., and Marunouchi, T. 1994. Induction of MHC class II antigen expression on murine microglia by interleukin-3. J. Neuroimmunol. 55:119–125.

    Google Scholar 

  12. Fujita, H., Tanaka, J., Toku, K., Tateishi, N., Suzuki, Y., Matsuda, S., Sakanaka, M., and Maeda, N. 1996. Effects of GMCSF and ordinary supplements on the ramification of microglia in culture: a morphometrical study. Glia 18:269–281.

    Google Scholar 

  13. Suzumura, A., Sawada, M., and Marunouchi, T. 1996. Selective induction of interleukin-6 in mouse microglia by granulocytemacrophage colony-stimulating factor. Brain Res. 713:192–198.

    Google Scholar 

  14. Matyszak, M. K., Denis-Donini, S., Citterio, S., Longhi, R., Granucci, F., and Ricciardi-Castagnoli, P. 1999. Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur. J. Immunol. 29:3063–3076.

    Google Scholar 

  15. Jander, S., Schroeter, M., Fischer, J., and Stoll, G. 2000. Differential regulation of microglial keratan sulfate immunoreactivity by proinflammatory cytokines and colony-stimulating factors. Glia 30:401–410.

    Google Scholar 

  16. Sawada, M., Itoh, Y., Suzumura, A., and Marunouchi, T. 1993. Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci. Lett. 160:131–134.

    Google Scholar 

  17. Kitamura, T., Sato, N., Arai, K., and Miyajima, A. 1991. Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell 66:1165–1174.

    Google Scholar 

  18. Silvennoinen, O., Witthuhn, B. A., Quelle, F. W., Cleveland, J. L., Yi, T., and Ihle, J. N. 1993. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc. Natl. Acad. Sci. USA 90:8429–8433.

    Google Scholar 

  19. Quelle, F. W., Sato, N., Witthuhn, B. A., Inhorn, R. C., Eder, M., Miyajima, A., Griffin, J. D., and Ihle, J. N. 1994. JAK2 associates with the beta c chain of the receptor for granulocytemacrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell. Biol. 14:4335–4341.

    Google Scholar 

  20. Brizzi, M. F., Zini, M. G., Aronica, M. G., Blechman, J. M., Yarden, Y., and Pegoraro, L. 1994. Convergence of signaling by interleukin-3, granulocyte-macrophage colony-stimulating factor, and mast cell growth factor on JAK2 tyrosine kinase. J. Biol. Chem. 269:31680–31684.

    Google Scholar 

  21. Mui, A. L., Wakao, H., O'Farrell, A. M., Harada, N., and Miyajima, A. 1995. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. Embo J. 14:1166–1175.

    Google Scholar 

  22. Okuda, K., Sanghera, J. S., Pelech, S. L., Kanakura, Y., Hallek, M., Griffin, J. D., and Druker, B. J. 1992. Granulocytemacrophage colony-stimulating factor, interleukin-3, and steel factor induce rapid tyrosine phosphorylation of p42 and p44 MAP kinase. Blood 79:2880–2887.

    Google Scholar 

  23. Tavernier, J., Devos, R., Cornelis, S., Tuypens, T., Van der Heyden, J., Fiers, W., and Plaetinck, G. 1991. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66:1175–1184.

    Google Scholar 

  24. Pazdrak, K., Stafford, S., and Alam, R. 1995. The activation of the Jak-STAT 1 signaling pathway by IL-5 in eosinophils. J. Immunol. 155:397–402.

    Google Scholar 

  25. Alam, R., Pazdrak, K., Stafford, S., and Forsythe, P. 1995. The interleukin-5/receptor interaction activates Lyn and Jak2 tyrosine kinases and propagates signals via the Ras-Raf-1-MAP kinase and the Jak-STAT pathways in eosinophils. Int. Arch. Allergy Immunol. 107:226–227.

    Google Scholar 

  26. Pazdrak, K., Schreiber, D., Forsythe, P., Justement, L., and Alam, R. 1995. The intracellular signal transduction mechanism of interleukin 5 in eosinophils: the involvement of lyn tyrosine kinase and the Ras-Raf-1-MEK-microtubule-associated protein kinase pathway. J. Exp. Med. 181:1827–1834.

    Google Scholar 

  27. Takatsu, K., Tominaga, A., Harada, N., Mita, S., Matsumoto, M., Takahashi, T., Kikuchi, Y., and Yamaguchi, N. 1988. T cell-replacing factor (TRF)/interleukin 5 (IL-5): molecular and functional properties. Immunol. Rev. 102:107–135.

    Google Scholar 

  28. Sanderson, C. J., Campbell, H. D., and Young, I. G. 1988. Molecular and cellular biology of eosinophil differentiation factor (interleukin-5) and its effects on human and mouse B cells. Immunol. Rev. 102:29–50.

    Google Scholar 

  29. Sawada, M., Suzumura, A., Itoh, Y., and Marunouchi, T. 1993. Production of interleukin-5 by mouse astrocytes and microglia in culture. Neurosci. Lett. 155:175–178.

    Google Scholar 

  30. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348–2357.

    Google Scholar 

  31. Ando, D. G., Clayton, J., Kono, D., Urban, J. L., and Sercarz, E. E. 1989. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell. Immunol. 124:132–143.

    Google Scholar 

  32. Olsson, T. 1995. Cytokine-producing cells in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurology 45:S11–15.

    Google Scholar 

  33. Conboy, I. M., DeKruyff, R. H., Tate, K. M., Cao, Z. A., Moore, T. A., Umetsu, D. T., and Jones, P. P. 1997. Novel genetic regulation of T helper 1 (Th1)/Th2 cytokine production and encephalitogenicity in inbred mouse strains. J. Exp. Med. 185:439–451.

    Google Scholar 

  34. Crisi, G. M., Santambrogio, L., Hochwald, G. M., Smith, S. R., Carlino, J. A., and Thorbecke, G. J. 1995. Staphylococcal enterotoxin B and tumor-necrosis factor-alpha-induced relapses of experimental allergic encephalomyelitis: protection by transforming growth factor-beta and interleukin-10. Eur. J. Immunol. 25:3035–3040.

    Google Scholar 

  35. Rott, O., Fleischer, B., and Cash, E. 1994. Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur. J. Immunol. 24:1434–1440.

    Google Scholar 

  36. Racke, M. K., Bonomo, A., Scott, D. E., Cannella, B., Levine, A., Raine, C. S., Shevach, E. M., and Röcken, M. 1994. Cytokineinduced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180:1961–1966.

    Google Scholar 

  37. Cannella, B., Gao, Y. L., Brosnan, C., and Raine, C. S. 1996. IL-10 fails to abrogate experimental autoimmune encephalomyelitis. J. Neurosci. Res. 45:735–746.

    Google Scholar 

  38. Merrill, J. E., Kono, D. H., Clayton, J., Ando, D. G., Hinton, D. R., and Hofman, F. M. 1992. Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc. Natl. Acad. Sci. USA 89:574–578.

    Google Scholar 

  39. Ringheim, G. E. 1995. Mitogenic effects of interleukin-5 on microglia. Neurosci. Lett. 201:131–134.

    Google Scholar 

  40. McCarthy, K. D. and de Vellis, J. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85:890–902.

    Google Scholar 

  41. Cole, R. and de Vellis, J. 1990. Preparation of astrocyte and oligodendrocyte cultures from primary rat glial cultures., Alan R. Liss, New York.

    Google Scholar 

  42. Ignarro, L. J. 1990. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol. 30:535–560.

    Google Scholar 

  43. Ding, M., Wong, J. L., Rogers, N. E., Ignarro, L. J., and Voskuhl, R. R. 1997. Gender differences of inducible nitric oxide production in SJL/J mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol. 77:99–106.

    Google Scholar 

  44. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.

    Google Scholar 

  45. Berridge, M. V. and Tan, A. S. 1993. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 303:474–482.

    Google Scholar 

  46. Liva, S. M., Kahn, M. A., Dopp, J. M., and de Vellis, J. 1999. Signal transduction pathways induced by GM-CSF in microglia: significance in the control of proliferation. Glia. 26:344–352.

    Google Scholar 

  47. Baumann, M. A. and Paul, C. C. 1997. Interleukin-5 and human B lymphocytes. Methods 11:88–97.

    Google Scholar 

  48. De Simone, R., Giampaolo, A., Giometto, B., Gallo, P., Levi, G., Peschle, C., and Aloisi, F. 1995. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J. Neuropathol. Exp. Neurol. 54:175–187.

    Google Scholar 

  49. Gerritse, K., Laman, J. D., Noelle, R. J., Aruffo, A., Ledbetter, J. A., Boersma, W. J., and Claassen, E. 1996. CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc. Natl. Acad. Sci. USA 93:2499–1504.

    Google Scholar 

  50. Issazadeh, S., Navikas, V., Schaub, M., Sayegh, M., and Khoury, S. 1998. Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo. J. Immunol. 161:1104–1112.

    Google Scholar 

  51. Aloisi, F., Ria, F., Penna, G., and Adorini, L. 1998. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J. Immunol. 160:4671–4680.

    Google Scholar 

  52. Aloisi, F., Ria, F., Columba-Cabezas, S., Hess, H., Penna, G., and Adorini, L. 1999. Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur. J. Immunol. 29:2705–2714.

    Google Scholar 

  53. Betz, M. and Fox, B. S. 1991. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol. 146:108–113.

    Google Scholar 

  54. Aloisi, F., Penna, G., Cerase, J., Menéndez Iglesias, B., and Adorini, L. 1997. IL-12 production by central nervous system microglia is inhibited by astrocytes. J. Immunol. 159:1604–1612.

    Google Scholar 

  55. Wu, C. Y., Wang, K., McDyer, J. F., and Seder, R. A. 1998. Prostaglandin E2 and dexamethasone inhibit IL-12 receptor expression and IL-12 responsiveness. J. Immunol. 161:2723–2730.

    Google Scholar 

  56. Stuehr, D. J., Gross, S. S., Sakuma, I., Levi, R., and Nathan, C. F. 1989. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J. Exp. Med. 169:1011–1020.

    Google Scholar 

  57. Liew, F. Y., Li, Y., and Millott, S. 1990. Tumour necrosis factor (TNF-alpha) in leishmaniasis. II. TNF-alpha-induced macrophage leishmanicidal activity is mediated by nitric oxide from L-arginine. Immunology 71:556–559.

    Google Scholar 

  58. Green, S. J., Mellouk, S., Hoffman, S. L., Meltzer, M. S., and Nacy, C. A. 1990. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol. Lett. 25:15–19.

    Google Scholar 

  59. Zielasek, J., Tausch, M., Toyka, K. V., and Hartung, H. P. 1992. Production of nitrite by neonatal rat microglial cells/brain macrophages. Cell. Immunol. 141:111–120.

    Google Scholar 

  60. Chao, C. C., Molitor, T. W., and Hu, S. 1993. Neuroprotective role of IL-4 against activated microglia. J. Immunol. 151:1473–1481.

    Google Scholar 

  61. Bagasra, O., Michaels, F. H., Zheng, Y. M., Bobroski, L. E., Spitsin, S. V., Fu, Z. F., Tawadros, R., and Koprowski, H. 1995. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 92:12041–12045.

    Google Scholar 

  62. Bö, L., Dawson, T. M., Wesselingh, S., Mörk, S., Choi, S., Kong, P. A., Hanley, D., and Trapp, B. D. 1994. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann. Neurol. 36:778–786.

    Google Scholar 

  63. Cross, A. H., Misko, T. P., Lin, R. F., Hickey, W. F., Trotter, J. L., and Tilton, R. G. 1994. Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J. Clin. Invest. 93:2684–2690.

    Google Scholar 

  64. Zhao, W., Tilton, R. G., Corbett, J. A., McDaniel, M. L., Misko, T. P., Williamson, J. R., Cross, A. H., and Hickey, W. F. 1996. Experimental allergic encephalomyelitis in the rat is inhibited by aminoguanidine, an inhibitor of nitric oxide synthase. J. Neuroimmunol. 64:123–133.

    Google Scholar 

  65. Ding, M., Zhang, M., Wong, J. L., Rogers, N. E., Ignarro, L. J., and Voskuhl, R. R. 1998. Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice. J. Immunol. 160:2560–2564.

    Google Scholar 

  66. Mitrovic, B., Ignarro, L. J., Montestruque, S., Smoll, A., and Merrill, J. E. 1994. Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience 61:575–585.

    Google Scholar 

  67. Zielasek, J., Jung, S., Gold, R., Liew, F. Y., Toyka, K. V., and Hartung, H. P. 1995. Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalomyelitis. J. Neuroimmunol. 58:81–88.

    Google Scholar 

  68. Ruuls, S. R., Van Der Linden, S., Sontrop, K., Huitinga, I., and Dijkstra, C. D. 1996. Aggravation of experimental allergic encephalomyelitis (EAE) by administration of nitric oxide (NO) synthase inhibitors. Clin. Exp. Immunol. 103:467–474.

    Google Scholar 

  69. Gold, D. P., Schroder, K., Powell, H. C., and Kelly, C. J. 1997. Nitric oxide and the immunomodulation of experimental allergic encephalomyelitis. Eur. J. Immunol. 27:2863–2869.

    Google Scholar 

  70. Fenyk-Melody, J. E., Garrison, A. E., Brunnert, S. R., Weidner, J. R., Shen, F., Shelton, B. A., and Mudgett, J. S. 1998. Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J. Immunol. 160:2940–2946.

    Google Scholar 

  71. Young, M. R., Wright, M. A., Matthews, J. P., Malik, I., and Prechel, M. 1996. Suppression of T cell proliferation by tumorinduced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J. Immunol. 156:1916–1922.

    Google Scholar 

  72. Bingisser, R. M., Tilbrook, P. A., Holt, P. G., and Kees, U. R. 1998. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 160:5729–5734.

    Google Scholar 

  73. van der Veen, R. C., Dietlin, T. A., Dixon Gray, J., and Gilmore, W. 2000. Macrophage-derived nitric oxide inhibits the proliferation of activated T helper cells and is induced during antigenic stimulation of resting T cells. Cell. Immunol. 199:43–49.

    Google Scholar 

  74. al-Ramadi, B. K., Meissler, J. J., Jr., Huang, D., and Eisenstein, T. K. 1992. Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. Eur. J. Immunol. 22:2249–2254.

    Google Scholar 

  75. Takagi, K., Nukaya, I., Yasukawa, K., and Suketa, Y. 1994. Inhibitory mechanisms of antibody production by nitrogen oxides released from activated macrophages during the immune response: relationship to energy consumption. Immunol. Cell Biol. 72:241–248.

    Google Scholar 

  76. Lisak, R. P., Zwiman, B., and Norman, M. 1975. Antimyelin antibodies in neurologic diseases. Immunofluorescent demonstration. Arch. Neurol. 32:163–167.

    Google Scholar 

  77. Mathiesen, T., von Holst, H., Fredrikson, S., Wirsén, G., Hederstedt, B., Norrby, E., Sundqvist, V. A., and Wahren, B. 1989. Total, anti-viral, and anti-myelin IgG subclass reactivity in inflammatory diseases of the central nervous system. J. Neurol. 236:238–242.

    Google Scholar 

  78. Zhang, J. W., Lambrechts, J., Heyligen, H., Vandenbark, A. A., and Raus, J. 1989. Human B cell lines secreting IgM antibody specific for myelin basic protein. J. Neuroimmunol. 23:249–256.

    Google Scholar 

  79. Link, H., Baig, S., Jiang, Y. P., Olsson, O., Höjeberg, B., Kostulas, V., and Olsson, T. 1989. B cells and antibodies in MS. Res. Immunol. 140:219–226; discussion 245–248.

    Google Scholar 

  80. Wei, X. Q., Charles, I. G., Smith, A., Ure, J., Feng, G. J., Huang, F. P., Xu, D., Muller, W., Moncada, S., and Liew, F. Y. 1995. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375:408–411.

    Google Scholar 

  81. McInnes, I. B., Leung, B., Wei, X. Q., Gemmell, C. C., and Liew, F. Y. 1998. Septic arthritis following Staphylococcus aureus infection in mice lacking inducible nitric oxide synthase. J. Immunol. 160:308–315.

    Google Scholar 

  82. Huang, F. P., Niedbala, W., Wei, X. Q., Xu, D., Feng, G. J., Robinson, J. H., Lam, C., and Liew, F. Y. 1998. Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages. Eur. J. Immunol. 28:4062–4070.

    Google Scholar 

  83. Meldrum, D. R., Shames, B. D., Meng, X., Fullerton, D. A., McIntyre, R. C., Jr., Grover, F. L., and Harken, A. H. 1998. Nitric oxide downregulates lung macrophage inflammatory cytokine production. Ann. Thorac. Surg. 66:313–317.

    Google Scholar 

  84. Magazine, H. I., Chang, J., Goumon, Y., and Stefano, G. B. 2000. Rebound from nitric oxide inhibition triggers enhanced monocyte activation and chemotaxis. J. Immunol. 165:102–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liva, S.M., de Vellis, J. IL-5 Induces Proliferation and Activation of Microglia via an Unknown Receptor. Neurochem Res 26, 629–637 (2001). https://doi.org/10.1023/A:1010983119125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010983119125

Navigation