Skip to main content
Log in

Quantum Monodromy and Bohr–Sommerfeld Rules

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is based on a talk given in Dijon for the 2000 summer school ‘Topological and Geometrical Methods: Applications to Dynamical Systems’. The standard definitions of the monodromy invariant for completely integrable classical systems are reviewed, and the link to the quantum monodromy observed in the joint spectrum of commuting operators is explained. The mathematical treatment relies on a modern and attractive version of the Bohr–Sommerfeld quantisation rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Child, M. S.: Quantum states in a champagne bottle, J. Phys. A 31 (1998), 657–670.

    Google Scholar 

  2. Child, M. S., Weston, T. and Tennyson, J.: Quantum monodromy in the spectrum of H2O and other systems: new insight into the level structure of quasi-linear molecules, Molec. Phys. 96(3) (1999), 371–379.

    Google Scholar 

  3. Colin de Verdière, Y. and Parisse, B.: Équilibre instable en régime semi-classique I: Concentration microlocale, Comm. Partial Differential Equations 19(9–10) (1994), 1535–1563.

    Google Scholar 

  4. Cushman, R. and Duistermaat, J. J.: The quantum spherical pendulum, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 475–479.

    Google Scholar 

  5. Cushman, R. and Sadovskií, D. A.: Monodromy in perturbed Kepler systems: hydrogen atom in crossed fields, Europhys. Lett. 47 (1999), 1–7.

    Google Scholar 

  6. Duistermaat, J. J.: On global action-angle variables, Comm. Pure Appl. Math. 33 (1980), 687–706.

    Google Scholar 

  7. Faure, F. and Zhilinskií, B. I.: Topological chern indices in molecular spectra, Phys. Rev. Lett. 85 (2000), 960–963; quant-ph/9912091.

    Google Scholar 

  8. Guillemin, V. and Uribe, A.: Monodromy in the quantum spherical pendulum, Comm. Math. Phys. 122 (1989), 563–574.

    Google Scholar 

  9. Hörmander, L.: The Analysis of Linear Partial Differential Operators, volumes I–IV, Springer, New York, 1983–1990.

    Google Scholar 

  10. Kozin, I. N. and Roberts, R. M.: Monodromy in the spectrum of an axisymmetric top molecule in electric field, Preprint, Warwick Univ., 2000.

  11. Sadovskií, D. A. and Zhilinskií, B. I.: Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A 256(4) (1999), 235–244.

    Google Scholar 

  12. Vũ Ngoc, S.: Quantum monodromy in integrable systems, Comm. Math. Phys. 203(2) (1999), 465–479.

    Google Scholar 

  13. Vũ Ngoc, S.: Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type, Comm. Pure Appl. Math. 53(2) (2000), 143–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

San, V.N. Quantum Monodromy and Bohr–Sommerfeld Rules. Letters in Mathematical Physics 55, 205–217 (2001). https://doi.org/10.1023/A:1010944312712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010944312712

Navigation