Skip to main content

The Laplace Transform, Mirror Symmetry, and the Topological Recursion of Eynard–Orantin

  • Conference paper
  • First Online:
Geometric Methods in Physics

Part of the book series: Trends in Mathematics ((TM))

Abstract

This paper is based on the author’s talk at the 2012 Workshop on Geometric Methods in Physics held in Białowieża, Poland. The aim of the talk is to introduce the audience to the Eynard–Orantin topological recursion. The formalism is originated in random matrix theory. It has been predicted, and in some cases it has been proven, that the theory provides an effective mechanism to calculate certain quantum invariants and a solution to enumerative geometry problems, such as open Gromov–Witten invariants of toric Calabi–Yau threefolds, single and double Hurwitz numbers, the number of lattice points on the moduli space of smooth algebraic curves, and quantum knot invariants. In this paper we use the Laplace transform of generalized Catalan numbers of an arbitrary genus as an example, and present the Eynard–Orantin recursion. We examine various aspects of the theory, such as its relations to mirror symmetry, Gromov–Witten invariants, integrable hierarchies such as the KP equations, and the Schrödinger equations.

Mathematics Subject Classification (2010). Primary: 14H15, 14N35, 05C30, 11P21; Secondary: 81T30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Communications in Number Theory and Physics 1, 347–452 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Cooper, D.M. Culler, H. Gillet, D. Long, and P. Shalen, Plane curves associated to character varieties of 3D manifolds, Invent. Math. 118, 47–84 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Alexandrov, A. Mironov and A. Morozov, Unified description of correlators in non-Gaussian phases of Hermitean matrix model, arXiv:hep-th/0412099 (2004).

    Google Scholar 

  4. B. Eynard, Topological expansion for the 1-hermitian matrix model correlation functions, arXiv:0407261 [hep-th] (2004).

    Google Scholar 

  5. M. Mariñno, Open string amplitudes and large order behavior in topological string theory, J. High Energy Physics 0803060, 1–33 (2008).

    Google Scholar 

  6. M. Mariñno, Chern-Simons theory, matrix models, and topological strings, Oxford University Press, 2005.

    Google Scholar 

  7. V. Bouchard, A. Klemm, M. Mariñno, and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys. 287, 117–178 (2008).

    Article  MathSciNet  Google Scholar 

  8. B. Eynard, M. Mulase and B. Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard-Mariñno conjecture on Hurwitz numbers, Publications of the Research Institute for Mathematical Sciences 47, 629–670( 2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Mulase and N. Zhang, Polynomial recursion formula for linear Hodge integrals, Communications in Number Theory and Physics 4, 267–294 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Bouchard, D. Hern´andez Serrano, X. Liu, and M. Mulase, Mirror symmetry of orbifold Hurwitz numbers, preprint 2012.

    Google Scholar 

  11. K. Chapman, M. Mulase, and B. Safnuk, Topological recursion and the Kontsevich constants for the volume of the moduli of curves, Communications in Number theory and Physics 5, 643–698 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Norbury, Counting lattice points in the moduli space of curves, arXiv:0801.4590 (2008).

    Google Scholar 

  13. P. Norbury, String and dilation equations for counting lattice points in the moduli space of curves, arXiv:0905.4141 (2009).

    Google Scholar 

  14. M. Mulase and M. Penkava, Topological recursion for the Poincar´e polynomial of the combinatorial moduli space of curves, Advances in Mathematics 230, 1322–1339 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Eynard and N. Orantin, Weil–Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models, arXiv:0705.3600 [math-ph] (2007).

    Google Scholar 

  16. K. Liu and H. Xu, Recursion formulae of higher Weil–Petersson volumes, Int.Math. Res. Notices 5, 835–859 (2009).

    MATH  Google Scholar 

  17. M. Mirzakhani, Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167, 179–222 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Mirzakhani, Weil–Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20, 1–23 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Mulase and B. Safnuk, Mirzakhani’s Recursion Relations, Virasoro Constraints and the KdV Hierarchy, Indian Journal of Mathematics 50, 189–228 (2008).

    MathSciNet  MATH  Google Scholar 

  20. O. Dumitsrescu, M. Mulase, A. Sorkin and B. Safnuk, The spectral curve of the Eynard–Orantin recursion via the Laplace transform, arXiv:1202.1159 [math.AG] (2012).

    Google Scholar 

  21. B. Eynard and N. Orantin, Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture, arXiv:1205.1103v1 [math-ph] (2012).

    Google Scholar 

  22. M. Aganagic and C. Vafa, Large N duality, mirror symmetry, and a Q-deformed A-polynomial for K knots, arXiv:1204.4709v4 [physics.hep-th] (2012).

    Google Scholar 

  23. G. Borot and B. Eynard, All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, arXiv:1205.2261v1 [mathph] (2012).

    Google Scholar 

  24. A. Brini, B. Eynard, and M. Mariño, Torus knots and mirror symmetry arXiv: 1105.2012 (2011).

    Google Scholar 

  25. R. Dijkgraaf, H. Fuji, and M. Manabe, The volume conjecture, perturbative knot invariants, and recursion relations for topological strings, arXiv:1010.4542 [hep-th] (2010).

    Google Scholar 

  26. H. Fuji, S. Gukov, and P. Sułkowski, Volume conjecture: refined and categorified, arXiv:1203.2182v1 [hep-th] (2012).

    Google Scholar 

  27. S. Gukov and P. Sułkowski, A-polynomial, B-model, and quantization, arXiv: 1108.0002v1 [hep-th] (2011).

    Google Scholar 

  28. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariñno, and C. Vafa, Topological Strings and Integrable Hierarchies, [arXiv:hep-th/0312085], Commun. Math. Phys. 261, 451–516 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Dijkgraaf, L. Hollands, and P. Sułkowski, Quantum curves and \( {\mathcal D} \) -modules, Journal of High Energy Physics 0810.4157, 1–58 (2009).

    Google Scholar 

  30. R. Dijkgraaf, L. Hollands P. Sułkowski, and C. Vafa, Supersymmetric gauge theories, intersecting branes and free Fermions, Journal of High Energy Physics 0802.106, (2008).

    Google Scholar 

  31. S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geometry & Topology Monographs 7, 291–309 (2004).

    Article  MathSciNet  Google Scholar 

  32. L.D. Faddeev, Volkov’s pentagon for the modular quantum dilogarithm, arXiv: 1201.6464 [math.QA] (2012).

    Google Scholar 

  33. H. Ooguri, A. Strominger, and C. Vafa, Black Hole Attractors and the Topological String, Phys. Rev. D70:106007, (2004).

    MathSciNet  Google Scholar 

  34. M. Kontsevich, Homological algebra of mirror symmetry, arXiv:alg-geom/9411018 (1994).

    Google Scholar 

  35. M. Ballard, Meet homological mirror symmetry, in “Modular forms and string duality,” Fields Inst. Commun. 54, 191–224 (2008).

    MathSciNet  Google Scholar 

  36. Y. Kodama and V.U. Pierce, Combinatorics of dispersionless integrable systems and universality in random matrix theory, arXiv:0811.0351 (2008).

    Google Scholar 

  37. M. Mulase and M. Zhou, The Laplace transform and the Eynard–Orantin topological recursion, preprint 2012.

    Google Scholar 

  38. R. Dijkgraaf, E. Verlinde, and H. Verlinde, Loop equations and Virasoro constraints in non-perturbative two-dimensional quantum gravity, Nucl. Phys. B348, 435–456 (1991).

    Article  MathSciNet  Google Scholar 

  39. M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Communications in Mathematical Physics 147, 1–23 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  40. E.Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in Differential Geometry 1, 243–310( 1991).

    Article  MathSciNet  Google Scholar 

  41. M. Mulase and P. Sułkowski, Spectral curves and the Schr¨odinger equations for the Eynard–Orantin recursion, preprint 2012.

    Google Scholar 

  42. M. Mulase, Algebraic theory of the KP equations, in “Perspectives in Mathematical Physics,” R. Penner and S.-T. Yau, editors, International Press Company, 157–223 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohico Mulase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Mulase, M. (2013). The Laplace Transform, Mirror Symmetry, and the Topological Recursion of Eynard–Orantin. In: Kielanowski, P., Ali, S., Odesskii, A., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds) Geometric Methods in Physics. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0645-9_11

Download citation

Publish with us

Policies and ethics