Skip to main content
Log in

Temperature Effect of Infrared Rays Absorbed by the Protein Molecules in the Living Systems

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The principal features of Infrared absorption of the protein molecules are anomalous red shifts of the main peaks and increases of intensity of the anomalous bands with decreasing temperature which are proved by experiments. We think that these anomalous phenomena are caused by the self-trapping of amide-I vibrational quantum (vibron). We thus proposed a soliton model of the vibrons interacting with optical vibration of amino acid residue (phonon) to study theoretically these phenomena. We find farther out the exponential-reductions of the intensity of the anomalous bands in the infrared absorption with increasing temperature in the protein molecules by using this model. This shows that the living things including human beings and animals can absorb more much infrared lights at low temperature than that at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Pang Xiao-feng, Chinese J. BioMed. Engineening 8 (1999) 39; Physics Sin. 27 (2000) 1210; J. Med. Instrument of World, 10 (2000) 76; J. Shandong Norma Univ. Sin. (nature) 15 (2000) 160; Biological and medical functions of infrared rays, Proc. IEEE-EMBS APCB ME-2000, Hangzhou Sin. (2000) P160 and Proc. 2th ICEMR-2000, Xian Sin. (2000) P86; The vibrational energy-spectra of the protein molecules and non-thermally biological effect of infrared light Proc. IR/MMW 2000 (Beijing) P160; The temperature effect of the Infrared absorption of the protein molecules in the living systems, Proc. IR/MMW-2000; Beijing (2000) P166. Commun. Theor. Phys. 32 (2000). Inter J. Infrared, Mill. Waves, 20 (2000) (this number)

    Google Scholar 

  2. Careri. G., Buonttempo. U., Caeta. F., Scott A. C., Phys. Rev. Lett. 51 (1983) 304; Scott, A. C., Phys. Rep. 217, 67 (1992); Physical 51 D (1990) 333

    Google Scholar 

  3. Eilbeck J. C., Lomdahl P. S., Scott A. C., Phys. Rev. B30 (1984) 4703

    Google Scholar 

  4. Scott A. C., Bigio I. J., Johnston C. T., Phys. Rev. B39 (1989) 12883

    Google Scholar 

  5. Careri G., Buontempo U., Galluzzi F., Scott A. C., Gratton. E., Shyamsunder E., Phys. Rev. B30 (1984) 4689

    Google Scholar 

  6. Alexander D. M., Krumbansl J. A., Phys. Rev. B33 (1986) 7172; Alexander D.M., Phys. Rev. Lett. 60 (1985) 138

    Google Scholar 

  7. Davydov A. S., J. Theor. Biol. 38 (1973) 559 and 66, (1997) 379; Phys. Scr. 20 (1979) 387

    Google Scholar 

  8. Benkui Tan, John P. Boyd, Phys. Lett. A240 (1998) 282; Xiao Y., Phys. Lett. A243 (1998) 174. Tekec.J, Ivic. Z and Przulj. Z., J. Phys. condensed matter 10 (1998) 1487

    Google Scholar 

  9. Pang Xiao-feng, J. Phys. condensed matter 2 (1990) 9541; European Phys. J. B10 (1999) 415 and 12 (2000) 3742; Phys. Rev. E62 (2000) 9516.

    Google Scholar 

  10. Pang Xiao-feng, Chinese J. Atom. & Mol. Phys. 5 (1987) 383 and 7 (1989) 1235; Phys.Sin. 22 (1993) 612; J. Nature Sin. 19 (1992) 915

    Google Scholar 

  11. Pang Xiao-feng, Chinese Phys. Lett. 10(6) (1993) 381 and 10 (7) (1993)437 and 10 (9) (1993) 517; Acta Phys. Sinica 42 (1993) 1856; Acta Phys. Slovaca 48 (1998) 99; Chinese Physics 9 (2000) 108

    Google Scholar 

  12. Pang Xiao-feng, Phys. Rev. E49(5) (1994) 4747; Chinese physics 9 (2000) 86.

    Google Scholar 

  13. Pang Xiao-feng, Chinese Science Bulletin. 38(18) (1993) 1572 and 38(19) (1993) 1665

    Google Scholar 

  14. Pang Xiao-feng, Acta Math. Scie. 13 (1993) 437 and ibid (suppl.) 16 (1996)1; J, Sichuan Univ. (Nature) Sin. 29 (1992) 491 and 30(1) (1993) 48

    Google Scholar 

  15. Pang Xiao-feng, Chinese J. Biophys. 9(4)(1993) 631 and 10 (1) (1994) 133

    Google Scholar 

  16. Pang Xiao-feng, Chinese J.Infrared Millimeter Wave 12 (1993) 77 and 16 (1997) 288; Chinese J. light scattering 4 (1992) 125.

    Google Scholar 

  17. Pang Xiao-feng, and J.W. H. Muller Kersten, J. Phys. Condensed matter 12 (2000)885.

    Google Scholar 

  18. Pang Xiao-feng, The theory for non-linear quantum mechanics, Chongqing Press (Chongqing), 1994, P576

    Google Scholar 

  19. Pang Xiao-feng J.Low. Temp. Phys. 58 (1985)334; Soliton Physics, Sichuan Sci. Techno. Press (Chengdu) (2000) p124–347

    Google Scholar 

  20. Go Be-lin, Pang Xiao-feng, Solitons, Chinese Science Press (Beijing) 1987, P248-328

    Google Scholar 

  21. Hakem. H., Quantum field theory of solids (Nath-Holland, Amsterdam, 1976)

    Google Scholar 

  22. Gradshteyn. I. S. and Ryzhik I. M., Table of Integrals, Series and Products (Academic New york, 1965)

  23. (23)Morse. M and Feshbach. H., Method of theoretical physics (McGraw-Hill, New York, 1953), p784

    Google Scholar 

  24. Fitchen, D.B. in physics of color Centers, edited by W.B. Fowler (Academic, New York, 1968)P293

  25. Krumhansl. J. A., in energy transfer dynamics, edited by T.W. Barrett and H. A. Pohl (Springer-verlag. Berlin 1987) P174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Xf., Xu, Ct. Temperature Effect of Infrared Rays Absorbed by the Protein Molecules in the Living Systems. International Journal of Infrared and Millimeter Waves 22, 277–289 (2001). https://doi.org/10.1023/A:1010796220869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010796220869

Keywords

Navigation