Skip to main content
Log in

Surfactant Concentration and End Effects on Foam Flow in Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Foaming injected gas is a useful and promising technique for achieving mobility control in porous media. Typically, such foams are aqueous. In the presence of foam, gas and liquid flow behavior is determined by bubble size or foam texture. The thin-liquid films that separate foam into bubbles must be relatively stable for a foam to be finely textured and thereby be effective as a displacing or blocking agent. Film stability is a strong function of surfactant concentration and type. This work studies foam flow behavior at a variety of surfactant concentrations using experiments and a numerical model. Thus, the foam behavior examined spans from strong to weak.

Specifically, a suite of foam displacements over a range of surfactant concentrations in a roughly 7 μm2, one-dimensional sandpack are monitored using X-ray computed tomography (CT). Sequential pressure taps are employed to measure flow resistance. Nitrogen is the gas and an alpha olefin sulfonate (AOS 1416) in brine is the foamer. Surfactant concentrations studied vary from 0.005 to 1 wt%. Because foam mobility depends strongly upon its texture, a bubble population balance model is both useful and necessary to describe the experimental results thoroughly and self consistently. Excellent agreement is found between experiment and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarra, M. G., Skauge, A., Sognesand, S. and Stenhaug, M.: 1996, A foam pilot test aimed at reducing gas inflow in a production well at the oseberg field, Petrol. Geosci. 2, 125-132.

    Google Scholar 

  • Akin, S., Demiral, M. R. B. and Okandan, E.: 1996, 'A novel method of porosity measurement utilizing computerized tomography. In situ 20(4), 347-365.

    Google Scholar 

  • Aronson, A. S., Bergeron, V., Fagan, M. E. and Radke, C. J.: 1994, The influence of disjoining pressure on foam stability and flow in porous media, Coll. Surf. A: Physicochem. Eng. Asp. 83, 109-120.

    Google Scholar 

  • Aziz, K. and Settari, A.: 1979, Petroleum Reservoir Simulation, Applied Science Publishers, London.

    Google Scholar 

  • Bergeron, V. and Radke, C. J.: 1992, Equilibrium measurments of oscillatory disjoining pressures in aqueous foam films, Langmuir 8(12), 3020-3026.

    Google Scholar 

  • Bergeron, V., Fagan, M. E. and Radke, C. J.: 1993, Generalized entering coefficients — A criterion for foam stability against oil in porous media, Langmuir 9(7), 1704-1713.

    Google Scholar 

  • Bernard, G. G., Holm, L. W. and Jacobs, L. W.: 1965, Effect of foam on trapped gas saturation and on permeability of porous media to gas, Soc. Pet. Eng. J. 5(4), 295-300.

    Google Scholar 

  • Bertin, H. J., Apaydin, O. G., Castanier, L.M. and Kovscek, A. R.: 1999, Foam flow in heterogeneous porous media: Effect of crossflow, Soc. Pet. Eng. J. 4(2), 75-82.

    Google Scholar 

  • Bretherton, F. P.: 1961, The motion of long bubbles in tubes, J. Fluid Mech. 10, 166-188.

    Google Scholar 

  • Chambers, K. T. and Radke, C. J.: 1991, Capillary phenomena in foam flow through porous media, in: N. R. Morrow (ed), Interfacial Phenomena in Petroleum Recovery, Marcel Dekker, New York, Ch. 6, pp. 191-255.

    Google Scholar 

  • Cohen, D., Patzek, T. W. and Radke, C. J.: 1997, Onset of mobilization and the fraction of trapped foam in porous media, Transport in Porous Media 28(3), 253-284.

    Google Scholar 

  • De Vries, A. S. and Wit, K.: 1990, Rheology of gas/water foam in the quality range relevant to steam foam, Soc. Pet. Eng. Res. Eng. 5(2): 185-192.

    Google Scholar 

  • Douglas, J. J. and Wagner, R. J.: 1958, Calculation of linear waterflood behavior including the effects of capillary pressure, Petrol. Transact., AIME 213, 96-102.

    Google Scholar 

  • Ettinger, R. A. and Radke, C. J., 1992, Influence of foam texture on steady foam flow in berea sandstone, Soc. Pet. Eng. Res. Eng. 7(1), 83-90.

    Google Scholar 

  • Friedmann, F., Chen, W. H. and Gauglitz, P. A.: 1991, Experimental and simulation study of hightemperature foam displacement in porous media, Soc. Pet. Eng. Res. Eng. 6(1), 37-45.

    Google Scholar 

  • Gillis, J. V. and Radke, C. J.: 1990, A dual-gas tracer technique for determining trapped gas saturation during steady foam flow in porous media, SPE 20519, at 65th SPE Annual Technical Conference, New Orleans, LA, September 23-26.

  • Hanssen, J. E.: 1993a, foam as a gas-blocking agent in petroleum reservoirs. I: Empirical observations and parametric study, J. Petrol. Sci. Engng 10(2), 135-156.

    Google Scholar 

  • Hanssen, J. E., 1993b, Foam as a gas-blocking agent in petroleum reservoirs. II: Mechanisms of gas blockage, J. Petrol. Sci. & Engng 10(2), 135-156.

    Google Scholar 

  • Hirasaki, G. J.: 1991, Thermodynamics of thin films and the three-phase contact regions, in: N. R. Morrow (ed), Interfacial Phenomena in Petroleum Recovery. Marcel Dekker, New York, 36, pp. 23-76.

    Google Scholar 

  • Hirasaki, G. J. and Lawson, J. B.: 1985, Mechanisms of foam flow in porous media: Apparent viscosity in smooth capillaries, Soc Pet. Eng. J. 25(2), 176-190.

    Google Scholar 

  • Hirasaki, G. J., Miller, C. A., Szafranski, R., Lawson, J. B. and Akiya, N.: 1997, Surfactant/foam process for aquifer remediation, SPE 37257, at SPE International Symposium on Oilfield Chemistry Houston, TX, Feb 18–21.

  • Hirasaki, G. J., Miller, C. A., Szafranski, R., Lawson, J. B., Tanzil, D., Jackson, R. E., Londergan, J. and Meinardus, H.: 1997, Field demonstration of the surfactant/foam process for aquifer remediation, SPE 39393, at SPE Ann. Tech. Conf. and Exhibition, San Antonio, TX, Oct 5–8.

  • Hoefner, M. L., Evans, E. M., Buckles, J. J. and Jones, T. A.: 1994, CO2 foam: Results from four developmental field trials, SPE/DOE 27787, at SPE/DOE 9th Symposium on Improved Oil Recovery, Tulsa, Oklahoma, April 17–20.

  • Holm, L. W.: 1968, The mechanism of gas and liquid flow through porous media in the presence of foam, Soc. Pet. Eng. J. 8(4), 359-369.

    Google Scholar 

  • Huh, D. G. and Handy, L. L.: 1989, Comparison of steady-and unsteady-state flow of gas and foaming solution in porous media, Soc. Pet. Eng. Res. Eng. 4(1), 77-84.

    Google Scholar 

  • Jiménez, A. I. and Radke, C. J.: 1989, Dynamic stability of foam lamellae flowing through a periodically constricted pore, in: J. K. Borchardt and T. F. Yen (eds) Oil-Field Chemistry: Enhanced Recovery and Production Stimulation, Washington, D.C., Amer. Chem. Soc. 396, pp. 460-479.

    Google Scholar 

  • Kharabaf, H. and Yortsos, Y. C.: 1998, Pore network model for foam formation and propagation in porous media, Soc. Pet. Eng. J. 3(1), 42-53.

    Google Scholar 

  • Khatib, Z. I., Hirasaki, G. J. and Falls, A. H.: 1988, Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media, Soc. Pet. Eng. Res. Eng. 3(3), 919-926.

    Google Scholar 

  • Kovscek, A. R., Patzek, T. W. and Radke, C. J.: 1995, A mechanistic population balance model for transient and steady-state foam flow in boise sandstone, Chem. Eng. Science 50(23), 3783-3799.

    Google Scholar 

  • Kovscek, A. R., Patzek, T. W. and Radke, C. J.: 1997, Mechanistic foam flow simulation in heterogeneous multidimensional porous media, Soc. Pet. Eng. J. 2(4), 511-526.

    Google Scholar 

  • Kovscek, A. R. and Radke, C. J.: 1994, Fundamentals of foam transport in porous media, in: L. L. Schramm (ed), Foams in the Petroleum Industry, Washington, D.C., Amer. Chem. Soc. 242, pp. 115-163.

    Google Scholar 

  • Kovscek, A. R. and Radke, C. J.: 1996, Gas bubble snap-off under pressure-driven flow in constricted noncircular capillaries, Coll. Surf. A: Physicochem. Engng Aspects 117, 55-76.

    Google Scholar 

  • Kyte, J. R. and Rapoport, L. A.: 1958, Linear waterflood behavior and end effects in water-wet porous media, Petrol. Trans., AIME 213, 423-426.

    Google Scholar 

  • Myers, T. J. and Radke, C. J.: 1999, Transient foam displacement in the presence of residual oil: Experiment and simulation using a population-balance model, SPE 56412, at SPE Ann. Tech. Conf. and Exhibition, Houston, TX, October 3–6.

  • Patzek, T. W.: 1996, Field application of steam foam for mobility improvement and profile control, Soc. Pet. Eng. Res. Eng. 11(2), 79-85.

    Google Scholar 

  • Perkins, F. M. J.: 1957, An Investigation of the role of capillary forces in laboratory waterfloods, Petrol. Trans., AIME 210, 409-411.

    Google Scholar 

  • Persoff, P., Radke, C. J., Pruess, K., Benson, S. M., and Witherspoon, P. A.: 1991, A laboratory investigation of foam flow in porous media at elevated pressures, Soc. Pet. Eng. Res. Eng. 6(3), 365-371.

    Google Scholar 

  • Pruess, K.: 1987, TOUGH User's Guide, Rep NUREG/CR-4645, Nucl. Reg. Commission, Washington D.C.

    Google Scholar 

  • Rossen, W. R.: 1995, Foams in enhanced oil recovery, in: R. K. Prud'homme and S. Khan (eds), Foams: Theory, Measurements and Applications, Surfactant Science Series, Vol 57, Marcel Dekker, New York.

    Google Scholar 

  • Rossen, W. R. and Gauglitz, P. A.: 1990, Percolation theory and mobilization of foams in porous media, Am. Inst. Chem. Eng. J. 37(8), 1176-1188.

    Google Scholar 

  • Sanchez, J. M., Schechter, R. S. and Monsalve, A.: 1986, The effect of trace quantities of surfactant on nitrogen/water relative permeabilities, SPE 15446, at 61st SPE Annual Technical Conference, New Orleans, LA, (October 5–8).

  • Saraf, D. N. and Fatt, I.: 1967, Three-phase relative permeability measurement using a nuclear magnetic resonance technique for estimating fluid saturation, Soc. of Pet. Eng. J. 9, 235-242.

    Google Scholar 

  • Stone, H. L.: 1970, Probability model for estimating three-phase relative permeability, J. Pet. Tech. 22(2), 214-218.

    Google Scholar 

  • Vrij, A.: 1966, Possible mechanism for the spontaneous rupture of thin, free liquid films, Disc. Faraday Soc. 42, 22-33.

    Google Scholar 

  • Wong, H., Radke, C. J. and Morris, S.: 1995, The motion of long bubbles in polygonal capillaries: I. Thin films, J. Fluid Mech. 292, 71-95.

    Google Scholar 

  • Wong, H., Radke, C. J. and Morris, S.: 1995, The motion of long bubbles in polygonal capillaries: II. Drag, fluid pressure, and fluid flow, J. Fluid Mech. 292, 95-110.

    Google Scholar 

  • Wunderlich, R.W., Fountain, J. C. and Jackson, R. E.: 1992, In situ remediation of aquifers contaminated with dense nonaqueous phase liquids by chemical enhanced solubilization, J. Soil Contam. 1(4), 361-378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apaydin, O.G., Kovscek, A.R. Surfactant Concentration and End Effects on Foam Flow in Porous Media. Transport in Porous Media 43, 511–536 (2001). https://doi.org/10.1023/A:1010740811277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010740811277

Navigation