Skip to main content
Log in

Naturally Enhanced Ion-Acoustic Spectra And Their Interpretation

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Incoherent scatter radars are designed to detect scatter from thermalfluctuations in the ionosphere. These fluctuations contain, among other things,features associated with ion-acoustic waves driven by random motions within theplasma. The resulting spectra are generally broad and noisy, but neverthelessthe technique can, through a detailed analysis of spectra, be used to measure arange of physical parameters in the Earth's upper atmosphere, and provides apowerful diagnostic in studies of magnetosphere-ionosphere coupling,thermosphere dynamics and the geospace environment in general. In recent yearsthere has been much interest in naturally occurring (as opposed to artificiallystimulated) enhanced ion-acoustic spectra seen in the auroral zone andcusp/cleft region. A study of the plasma instability processes that lead tosuch spectra will help us to better understand auroral particle acceleration,wave-particle and wave-wave interactions in the ionosphere, and theirassociation with magnetospheric processes. There is now a substantial body ofliterature documenting observations of enhanced ion-acoustic spectra, but thereremains controversy over generation mechanisms. We present a review ofliterature documenting observations of naturally enhanced ion-acoustic spectra,observed mainly along the geomagnetic field direction, along with a discussionof the theories put forward to explain such phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beynon, W.J.G. and Williams, P.J.S.: 1978, Incoherent scatter of radio waves from the ionosphere, Rep. Prog. Phys. 41, 909–957.

    Google Scholar 

  • Boehm, M.H., Carlson, C.W., McFadden, J.P., Clemmons, J.H. and Mozer, F.S.: 1990, Highresolution sounding rocket observations of large amplitude Alfvén waves, J. Geophys. Res. 95, 12157–12171.

    Google Scholar 

  • Bowles, K.E.: 1958, Observations of vertical incidence scatter from the ionosphere at 41 Mc/s, Phys. Rev. Lett. 1, 454–455.

    Google Scholar 

  • Buchert, S.C., van Eyken, A.P., Ogawa, T. and Watanabe, S.: 1999, Naturally-enhanced ion-acoustic lines seen with the EISCAT Svalbard Radar, Adv. Space. Res. 23, 1699–1704.

    Google Scholar 

  • Cabrit, B., Opgenoorth, H. and Kofman, W.: 1996, Comparison between EISCAT UHF and VHF backscattering cross section, J. Geophys. Res. 101, 2369–2376.

    Google Scholar 

  • Chen, Francis F.: 1984, Introduction to Plasma Physics and Controlled Fusion (Second Edition), Volume 1, Plasma Physics, Plenum Press, New York.

    Google Scholar 

  • Collis, P.N., Häggström, I., Kaila, K. and Rietveld, M.T.: 1991, EISCAT radar observations of enhanced incoherent scatter spectra: Their relation to red aurora and field-aligned currents, Geophys. Res. Lett. 18, 1031–1034.

    Google Scholar 

  • Davis, C.J. and Lockwood, M.: 1996, Predicted signatures of pulsed reconnection in ESR data, Ann. Geophys. 14, 1246–1256.

    Google Scholar 

  • Dougherty, J.P. and Farley, D.T.: 1963, A theory of collision dominated electron density fluctuations in a plasma with applications to incoherent scattering, J. Geophys. Res. 68, 5437–5486.

    Google Scholar 

  • Evans, J.V.: 1969, Theory and practice of ionosphere study by Thomson scatter radar, Proc. IEEE 57, 496–530.

    Google Scholar 

  • Fejer, J.A.: 1979, Ionospheric modification and parametric instabilities, Rev. Geophys. Space Phys. 17, 135–153.

    Google Scholar 

  • Forme, F.R.E.: 1993, A new interpretation on the origin of enhanced ion-acoustic fluctuations in the upper atmosphere, Geophys. Res. Lett. 20, 2347–2350.

    Google Scholar 

  • Forme, F.R.E.: 1999, Parametric decay of beam-driven Langmuir waves and enhanced ion-acoustic fluctuations in the ionosphere: A weak turbulence approach, Ann. Geophys. 17, 1172–1181.

    Google Scholar 

  • Forme, F.R.E. and Fontaine, D.: 1999, Enhanced ion-acoustic fluctuations and ion outflows, Ann. Geophys. 17, 182–189.

    Google Scholar 

  • Forme, F.R.E., Fontaine, D. and Wahlund, J.-E.: 1995, Two different types of enhanced ion-acoustic fluctuations observed in the topside ionosphere, J. Geophys. Res. 100, 14625–14636.

    Google Scholar 

  • Forme, F.R.E., Ogawa, Y. and Buchert, S.C.: 2000, Naturally enhanced ion acoustic fluctuations seen at different wavelengths, J. Geophys. Res. in press.

  • Foster, J.C.: 1990, Plasma turbulence and enhanced UHF radar backscatter from the topside ionosphere, In Physics of Space Plasma (1988), SPI Conf. Proc. 8, 231–229.

    Google Scholar 

  • Foster, J.C. and Erickson, P.J.: 2000, Simultaneous observations of E-region coherent backscatter and electric field amplitude at F-region heights with the Millstone Hill radar, Geophys. Res. Lett. 19, 3177–3180.

    Google Scholar 

  • Foster, J.C., del Pozo, C., Groves, K. and St.-Maurice, J.-P.: 1988, Radar observations of the onset of current-driven instabilities in the topside ionosphere, Geophys. Res. Lett. 15, 160–163.

    Google Scholar 

  • Foster, J.C., Buonsanto, M.J., Mendillo, M., Nottingham, D., Rich, F.J. and Denig, W.: 1994, Coordinated stable auroral red arc observations: Relationship to plasma convection, J. Geophys. Res. 99, 11429–11439.

    Google Scholar 

  • Gavrishchaka, V.V., Ganguli, G.I., Bakshi, P.M. and Koepke, M.E.: 1998, Higher order nonlocal formalism for linear analysis of a magnetized multispecies plasma with inhomogeneous flows, Phys. Plasmas 5, 10–21.

    Google Scholar 

  • Gordon, W.E.: 1958, Incoherent scattering of radio waves by free electrons with applications to space exploration by radar, Proc. IRE 46, 1824–1829.

    Google Scholar 

  • Guio, P., Lilensten, J., Kofman, W. and Bjørnå, N.: 1998, Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines, Ann. Geophys. 16, 1226–1240.

    Google Scholar 

  • Kindel, J.M. and Kennel, C.F.: 1971, Topside current instabilities, J. Geophys. Res. 76, 3055–3078.

    Google Scholar 

  • Lockwood, M., Suvanto, K., St.-Maurice, J.-P., Kikuchi, K., Bromage, B.J.I., Willis, D.M., Crothers, S.R., Todd, H. and Cowley, S.W.H.: 1988, Scattered power from non-thermal, F-region plasma observed by EISCAT—evidence for coherent echoes?, J. Atmos. Terr. Phys. 50, 467–485.

    Google Scholar 

  • Loranc, M. and St.-Maurice, J.-P.: 1994, A time-dependent gyro-kinetic model of thermal ion upflows in the high-latitude F-region, J. Geophys. Res. 99, 17429–17451.

    Google Scholar 

  • Lummerzheim, D. and Lilensten, J.: 1994, Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations, Ann. Geophys. 12, 1039–1051.

    Google Scholar 

  • Maynard, N.C., Evans, D.S. and Troim, J.: 1982, Electric field observations of time constants related to charging and charge neutralization processes in the ionosphere, In Theories, B, Physics, Vol. 79, Artificial Particle Beams in Space Plasma Studies, edited by B. Grandal, pp. 627–644, Plenum, New York.

    Google Scholar 

  • Mishin, E.V. and Fiala, V.: 1995, Radiation of whistlers by ion-acoustic turbulence in the ionosphere, J. Geophys. Res. 100, 19695–19700.

    Google Scholar 

  • Noel, J.-M.A., St.-Maurice, J.-P. and Blelly, P.-L.: 2000, Nonlinear model of short-scale electrodynamics in the auroral ionosphere, Ann. Geophys. 18, 1128–1144.

    Google Scholar 

  • Papadopolous, K.: 1977, A review of anomalous resistivity for the ionosphere, Rev. Geophys. 15, 113–127.

    Google Scholar 

  • Providakes, J.F., Kelley, M.C., Swartz, W.E., Mendillo, M. and Holt, J.M.: 1989, Radar and optical measurements of ionospheric processes associated with subauroral electric fields, J. Geophys. Res. 94, 5350–5366.

    Google Scholar 

  • Raman, R.S.V., St.-Maurice, J.-P. and Ong, R.S.B.: 1981, Incoherent scattering of radar waves in the auroral ionosphere, J. Geophys. Res. 86, 4751–4762.

    Google Scholar 

  • Rees, M.H.: 1989, Physics and Chemistry of the Upper Atmosphere, Cambridge University Press.

  • Rietveld, M.T., Collis, P.N. and St.-Maurice, J.-P.: 1991, Naturally enhanced ion-acoustic waves in the auroral ionosphere observed with the EISCAT 933-MHz radar, J. Geophys. Res. 96, 19291–19305.

    Google Scholar 

  • Rietveld, M.T., Collis, P.N., van Eyken, A.P. and Løvhaug, U.P.: 1996, Coherent echoes during EISCAT UHF Common Programs, J. Atmos. Terr. Phys. 58, 161–174.

    Google Scholar 

  • Rishbeth, H. and Williams, P.J.S.: 1985, The EISCAT ionospheric radar: The system and its early results, Q. J. R. Atsr. Soc. 26, 478–512.

    Google Scholar 

  • Rosenbluth, M.N. and Rostoker, N.: 1962, Scattering of electromagnetic waves by a non-equilibrium plasma, Phys. Fluids 5, 776–788.

    Google Scholar 

  • Sagdeev, R.S. and Galeev, A.A.: 1969, Nonlinear plasma theory, T.M. O'Neill and D.L. Book (eds.), W.A. Benjamin, New York.

    Google Scholar 

  • Sandholt, P.E., Egeland, A. and Lybekk, B.: 1986, On the spatial relationship between auroral emissions and magnetic signatures of plasma convection in the midday polar cusp and cap ionospheres during negative and positive IMF B z: A case study, J. Geophys. Res. 91, 2108–2112.

    Google Scholar 

  • Sedgemore-Schulthess, K.J.F., Lockwood, M., Trondsen, T.S., Lanchester, B.S., Rees, M.H., Lorentzen, D.A. and Moen, J.: 1999, Coherent ESR spectra from the dayside cusp/cleft and their implications for transient field-aligned currents, J. Geophys. Res. 104, 24613–24624.

    Google Scholar 

  • Southwood, D.J.: 1987, The ionospheric signature of flux transfer events, J. Geophys. Res. 92, 3207–3213.

    Google Scholar 

  • Stasiewicz, K. and Potemra, T.: 1998, Multiscale current structures observed by Freja, J. Geophys. Res. 103, 4315–4325.

    Google Scholar 

  • Stasiewicz, K., Holmgren, G. and Zanetti, L.: 1998, Density depletions and current singularities observed by Freja, J. Geophys. Res. 103, 4251–4260.

    Google Scholar 

  • St.-Maurice, J.-P. and Schunk, R.W.: 1979, Ion velocity distributions in the high latitude ionosphere, Rev. Geophys. Space Phys. 17, 99–134.

    Google Scholar 

  • St.-Maurice, Foster, J.C., Holt, J.M. and del Pozo, C.: 1989, First result on the observation of 440-MHz high-latitude coherent echoes from the E-region with the Millstone Hill radar, J. Geophys. Res. 94, 6771–6798.

    Google Scholar 

  • St.-Maurice, J.-P., Winkler, E. and Hamza, A.M.: 1994, Ionospheric ion velocity distributions and associated transport properties in the presence of auroral electric field gradients, J. Geophys. Res. 99, 19527–19548.

    Google Scholar 

  • St.-Maurice, J.-P., Kofman, W. and James, D.: 1996, In-situ generation of intense parallel electric fields in the lower ionosphere, J. Geophys. Res. 101, 335–356.

    Google Scholar 

  • Thomson, J.J.: 1906, Conduction of Electricity through Gases, Cambridge University Press.

  • Trondsen, T.S. and Cogger, L.L.: 1997, High-resolution television observations of black aurora,J. Geophys. Res. 102, 363–378.

    Google Scholar 

  • Wahlund, J.-E., Forme, F.R.E., Opgenoorth, H.J., Persson, M.A.L., Mishin, E.V. and Volotkin, A.S.: 1922a, Scattering of electromagnetic waves from a plasma: Enhanced ion-acoustic fluctuations due to ion-ion two-stream instabilities, Geophys. Res. Lett. 19, 1919–1922.

    Google Scholar 

  • Wahlund, J.-E., Opgenoorth, H.J., Häggström, I., Winser, K.J. and Jones, G.O.L.: 1992B, EISCAT observations of topside ionospheric ion outflows during auroral activity: Revisited, J. Geophys. Res. 97, 3019–3037.

    Google Scholar 

  • Wahlund, J.-E., Opgenoorth, H.J., Forme, F.R.E., Persson, M.A.L., Häggström, I. and Lilensten, J.: 1993, Electron energization in the topside auroral ionosphere: on the importance of ion-acoustic turbulence, J. Atmos. Terr. Phys. 55, 623–645.

    Google Scholar 

  • Wannberg, G., Wolf, I., Vanhainen, L.G., Koseniemi, K., Röttger, J., Postila, M., Jacobsen, R., Stenberg, A., Larsen, R., Eliasen, S., Heck, S. and Huuskonen, A.: 1997, The EISCAT Svalbard Radar: A case study in modern incoherent scatter radar system design, Radio Sci. 32, 2283–2307.

    Google Scholar 

  • Whitteker, J.H.: 1977, The transient response of the topside ionosphere to precipitation, Planet. Space Sci. 25, 773–786.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedgemore-Schulthess, F., St. Maurice, JP. Naturally Enhanced Ion-Acoustic Spectra And Their Interpretation. Surveys in Geophysics 22, 55–92 (2001). https://doi.org/10.1023/A:1010691026863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010691026863

Navigation