Skip to main content
Log in

Gyrokinetic Analysis of Influence of Electron Beam Eccentricity on Operation of Higher-Order Mode in a Coaxial Cavity Gyrotron

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A gyrokinetic analysis is presented to the influence of the electron beam eccentricity on the power and starting current of a coaxial cavity gyrotron, which operates in a higher-order mode TE31, 17, 1 with a frequency of 165 GHz. It is found that the starting current becomes larger because of the existence of the electron-beam eccentricity. Especially, the power will be decreased substantially by the electron beam eccentricity, for example, down to 93% of the power without any eccentricity even if the eccentricity is 1% of the outer conductor radius. The acceptable range of the electron beam voltage and operating magnetic field for the establishment of the electromagnetic oscillation is narrowed by the electron-beam eccentricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Thumm and W. Kasparek, Fusion Eng. And Design 26, 291(1995).

    Google Scholar 

  2. K.E. Kreischer, R.J. Temkin, H.P. Fetterman, and W.J. Mulligan, IEEE Trans. on Microwave Theory and Tech. 32, 481(1984).

    Google Scholar 

  3. J.J. Barroso and R.A. Correa, Int. J. Infrared and Millimeter Waves 13, 443(1992).

    Google Scholar 

  4. S.N. Vlasov, L.I. Zagryadskaya, and I.M. Orlova, Radio Eng. and Electron Phys. 21, 96(1976).

    Google Scholar 

  5. V.A. Flyagin and G.S. Nusinovich, IEEE Proc. 76, 644(1988).

    Google Scholar 

  6. G.S. Nusinovich, M.E. Read, O. Dumbrajs, and K.E. Kreischer, IEEE Trans. on Electron Devices 41, 433(1994).

    Google Scholar 

  7. M. Thumm, Fusion Eng. And Design 30, 139(1995).

    Google Scholar 

  8. S.C. Zhang and M. Thumm, Phys. Plasmas 3, 2760(1996).

    Google Scholar 

  9. B. Piosczyk, O. Braz, G. Dammertz et al., IEEE Trans. on Plasma Science 25, 460(1997).

    Google Scholar 

  10. C. Istrou, O. Braz, G. Dammertz et al., IEEE Trans, on Plasma Science 25, 470(1997).

    Google Scholar 

  11. O. Dumbrajs and A. Pavelyev, Int. J. Electron. 82, 26(1997).

    Google Scholar 

  12. S.C. Zhang and M. Thumm, Phys. Plasmas 6, 1622(1999).

    Google Scholar 

  13. S.C. Zhang and M. Thumm, Int. J. Infrared and Millimeter Waves 20,157(1999).

    Google Scholar 

  14. S.C. Zhang and M. Thumm, Int. J. Infrared and Millimeter Waves 20,1271(1999).

    Google Scholar 

  15. S.C. Zhang and M. Thumm, IEEE Trans. on Microwave Theory and Techniques 48, 8(2000).

    Google Scholar 

  16. Sakamoto, et al., J. Physical Society of Japan 65, 1888(1996).

    Google Scholar 

  17. Sakamoto, et al., Int. J. Infrared and Millimeter Waves 18, 1637(1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, SC. Gyrokinetic Analysis of Influence of Electron Beam Eccentricity on Operation of Higher-Order Mode in a Coaxial Cavity Gyrotron. International Journal of Infrared and Millimeter Waves 22, 571–576 (2001). https://doi.org/10.1023/A:1010668904042

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010668904042

Navigation