Skip to main content
Log in

Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L.

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Seed-specifically expressed β-ketoacyl-CoA synthase genes of Brassica napus (Bn-FAE1.1 genes) were cloned from two cultivars, namely Askari, a high-erucic-acid type, and Drakkar, a low-erucic-acid type. The genes from the two cultivars were found to be nearly identical. They encode proteins of 507 amino acids, the sequences of which differ only at position 282. The Bn-FAE1.1 gene of Askari, unlike that of Drakkar, was functionally expressed in yeast cells suggesting that the single amino acid exchange effects the low erucic acid phenotype at the E1 gene locus. In yeast cells the β-ketoacyl-CoA synthase of Askari elongated not only oleoyl but also palmitoleoyl groups as well as saturated acyl groups in such a way that monounsaturated acyl groups of 22 carbons and saturated ones of 26 carbons were formed as main products. A reporter gene fused to the promoter region of the Bn-FAE1.1 gene from Askari showed seed-specific expression in transgenic rapeseed plants. Over-expression of the coding region of the Askari gene in developing seeds of transgenic Drakkar plants resulted in a significant increase in the levels of eicosenoic acid and erucic acid esterified in the seed oil. On the other hand, in transgenic high-erucic-acid rapeseed plants the increase in erucic acid level was at most 60% although the chimeric Bn-FAE1.1 gene was co-expressed with an erucoyl-CoA-specific lysophosphatidate acyltransferase gene enabling trierucoyl glycerol to accumulate in the seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altschul, S.T., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Google Scholar 

  • An, G., Ebert, P.R., Mitra, A. and Ha, S.B. 1988. Binary vectors. In: S.B. Gelvin, R.A. Schilperoort and D.P.S. Verma (Eds.) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. A3: 1–19.

    Google Scholar 

  • Andersson, B.Å and Holmann, R.T. 1974. Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids 9: 185–190.

    Google Scholar 

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Albright, L.M., Coen, D.M. and Varki, A. 1995. Current Protocols in Molecular Biology. John Wiley, New York.

    Google Scholar 

  • Bao, X., Pollard, M. and Ohlrogge, J. 1998. The biosynthesis of erucic acid in developing embryos of Brassica rapa. Plant Physiol. 118: 183–190.

    Google Scholar 

  • Barret, P., Delourme, R., Renard, M., Domergue, F., Lessire, R., Delseny, M. and Roscoe, T.J. 1998. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor. Appl. Genet. 96: 177–186.

    Google Scholar 

  • Bäumlein, H., Nagy, I., Villarroel, R., Inzé, D. and Wobus, U. 1992. Cis-analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J. 2: 233–239.

    Google Scholar 

  • Bobb, A.J., Chern, M.-S. and Bustos, M.M. 1997. Conserved RY-repeats mediate transactivation of seed-specific promoters by the developmental regulator PvALF. Nucl. Acids Res. 25: 641–647.

    Google Scholar 

  • Brough, C.L., Coventry, J.M., Christie, W.W., Kroon, J.T.M., Brown, A. R., Barsby, T.L. and Slabas, A.R. 1996. Towards the genetic engineering of triacylglycerols of defined fatty acid composition: major changes in erucic acid content at the sn-2 position affected by the introduction of a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii into oil seed rape. Mol. Breed. 2: 133–142.

    Google Scholar 

  • Cahoon, E.B., Marillia, E.F., Stecca, K.L., Hall, S.E., Taylor, D.C. and Kinney, A.J. 2000. Production of fatty acid components of meadowfoam oil in somatic soybean embryos. Plant Physiol. 124: 243–251.

    Google Scholar 

  • Clemens, S. and Kunst, L. 1997. Isolation of a Brassica napus cDNA encoding 3-ketoacyl-CoA synthase, a condensing enzyme involved in the biosynthesis of very long chain fatty acids in seeds (PGR97-125). Plant Physiol. 115: 313–314.

    Google Scholar 

  • De Block, M., Brouwer, D.D. and Tenning, P. 1989. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91: 694–701.

    Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.

    Google Scholar 

  • Domergue, F., Chevalier, S., Santarelli, X., Cassagne, C. and Lessire, R. 1999. Evidence that oleoyl-CoA and ATP-dependent elongations coexist in rapeseed (Brassica napus L.). Eur. J. Biochem. 263: 464–470.

    Google Scholar 

  • Ellerström, M., Stalberg, K., Ezcurra, I. and Rask, L. 1996. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol. Biol. 32: 1019–1027.

    Google Scholar 

  • Fehling, E. and Mukherjee, K.D. 1991. Acyl-CoA elongase from higher plant (Lunaria annua): metabolic intermediates of very long chain acyl-CoA products and substrate specificity. Biochim. Biophys. Acta 1082: 239–247.

    Google Scholar 

  • Fourmann, M., Barret, P., Renard, M., Pelletier, G., Delourme, R. and Brunel, D. 1998. The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor. Appl. Genet. 96: 852–858.

    Google Scholar 

  • Frentzen, M. 1993. Acyltransferases and triacylglycerols. In: T.S. Moore Jr. (Ed.) Lipid Metabolism in Plants, CRC Press, Boca Raton, FL, pp. 195–220.

    Google Scholar 

  • Han, X., Lühs, W., Sonntag, K., Borchardt, D.S., Frentzen, M. and Wolter, F.P. 1998. A Brassica napus cDNA restores the deficiency of canola fatty acid elongation at a high level. In: J. Sánchez, E. Cerdá-Olmedo and E. Matínez-Force (Eds.) Advances in Plant Lipid Research, Universidad de Sevilla, Sevilla, pp. 665–667.

    Google Scholar 

  • Hanke, C., Wolter, F.P., Coleman, J., Peterek, G. and Frentzen, M. 1995. A plant acyl-transferase involved in triacylglycerol biosynthesis complements an Escherichia coli sn-1-acylglycerol-3-phosphate acyltransferase mutant. Eur. J. Biochem. 232: 806–810.

    Google Scholar 

  • Harvey, B.L. and Downey, R.K. 1964. The inheritance of erucic acid content in rapeseed (Brassica napus). Can. J. Plant Sci. 44: 104–111.

    Google Scholar 

  • Harwood, J.L. 1980. Plant acyl lipids: structure, distribution and analysis. In: P.K. Stumpf (Ed.) The Biochemistry of Plants, Academic Press, New York, pp. 2–56.

    Google Scholar 

  • Hlousek-Radojcic, A., Imai, H. and Jaworski, J.G. 1995. Oleoyl-CoA is not an immediate substrate for fatty acid elongation in developing seeds of Brassica napus. Plant J. 8: 803–809.

    Google Scholar 

  • James, D.W., Lim, E., Keller, J., Plooy, I. and Dooner, H.K. 1995. Directed tagging of the Arabidopsis fatty acid elongation1 (FAE1) gene with the maize transposon activator. Plant Cell 7: 309–319.

    Google Scholar 

  • Jefferson, R.A, Kavanagh, T.A and Bevan, M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Lardizabal, K.D., Metz, J.G., Sakamoto, T., Hutton, W.C., Pollard, M.R. and Lassner, M.W. 2000. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis. Plant Physiol. 122: 645–655.

    Google Scholar 

  • Lassner, M.W., Levering, C.K., Davies, H.M. and Knutzon, D.S. 1995. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of tri-acylglycerol in transgenic rapeseed oil. Plant Physiol. 109: 1389–1394.

    Google Scholar 

  • Lassner, M.W., Lardizabal, K. and Metz, J.G. 1996. A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8: 281–292.

    Google Scholar 

  • Lööf, B. and Appleqvist, L. 1972. Plant breeding for improved yield and quality. In: L. Appleqvist and R. Ohlson (Eds.) Rapeseed, Elsevier, Amsterdam, pp. 101–122.

    Google Scholar 

  • Lühs, W. and Friedt, W. 1994. Stand und Perspektiven der Züchtung von Raps (Brassica napus L.) mit hohem Erucasäure-Gehalt im Öl für industrielle Nutzungszwecke. Fat Sci. Technol. 96: 137–146.

    Google Scholar 

  • Lühs, W.W, Voss, A., Han, J., Gräfin zu Münster, A., Weier, D., Wolter, F.P., Frentzen, M. and Friedt, W. 1999. Genetic modification of erucic acid biosynthesis in Brassica napus.In: G.T.S. Mugnozza, E. Porceddu and M.A. Pagnotta (Eds.) Genetics and Breeding for Crop Quality and Resistance (Developments in Plant Breeding Vol. 8), Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 323–330.

    Google Scholar 

  • Millar, A.A. and Kunst, L. 1997. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J. 12: 121–131.

    Google Scholar 

  • Millar, A.A., Wrischer, M. and Kunst, L. 1998. Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. Plant Cell 11: 1889–1902.

    Google Scholar 

  • Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C. and Kunst, L. 1999. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11: 825–838.

    Google Scholar 

  • Ochman, H., Gerber, A.S. and Hartl, D.L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621–623.

    Google Scholar 

  • Ouwerkerk, P.B.F. and Memelink, J. 1999. A G-box element from the Catharanthus roseus strictosidine synthase (Str)genepromoter confers seed-specific expression in transgenic tobacco plants. Mol. Gen. Genet. 261: 635–643.

    Google Scholar 

  • Post-Beittenmiller, D. 1996. Biochemistry and molecular biology of wax production in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 405–430.

    Google Scholar 

  • Pruitt, R.E., Vielle-Calzada, J.P., Ploense, S.E., Grossniklaus, U. and Lolle, S.J. 2000. FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc. Natl. Acad. Sci. USA 97: 1311–1316.

    Google Scholar 

  • Roscoe, T., Lessire, R., Renard, M. and Delseny, M. 1998. Tri-acylglycerol composition in Brassica napus is associated with variation in the sequence of the FAE1 gene. In: J. Sánchez, E. Cerdá-Olmedo and E. Matínez-Force (Eds.) Advances in Plant Lipid Research, Universidad de Sevilla, Sevilla, pp. 675–678.

    Google Scholar 

  • Sandhu, J.S., Webster, C.I. and Gray, J.C. 1998. A/T-rich sequences act as quantitative enhancers of gene expression in transgenic tobacco and potato plants. Plant Mol. Biol. 37: 885–896

    Google Scholar 

  • Scofield, S.R. and Crouch, M.L. 1987. Nucleotide sequence of a member of the napin storage protein family from Brassica napus. J. Biol. Chem. 262: 12202–12208.

    Google Scholar 

  • Sperling, P., Zähringer, U., and Heinz, E. 1998. A sphingolipid de-saturase from higher plants: Identification of a new cytochrome b5 fusion protein. J. Biol. Chem. 273: 28590–28596.

    Google Scholar 

  • Stålberg, K., Ellerström, M., Sjödahl, S., Ezcurra, I., Wycliffe, P. and Rask, L. 1998. Heterologous and homologous transgenic expression directed by a 2S seed storage promoter of Brassica napus. Transgenic Res. 7: 165–172.

    Google Scholar 

  • Stefansson, B.R., Hougen, F.W. and Downey, R.K. 1961. Note on the isolation of rape plants with seed oil free from erucic acid. Can. J. Plant Sci. 41: 218–219.

    Google Scholar 

  • Stefansson, B.R. 1983. The development of improved rapeseed cultivars. In: J.K.G. Kramer, F.D. Sauer and W.J. Pigden (Eds.) High and Low Erucic Acid Rapeseed Oils, Academic Press, Toronto, pp. 143–159.

    Google Scholar 

  • Thomas, T.L. 1993. Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5: 1401–1410.

    Google Scholar 

  • Todd, J., Post-Beittenmiller, D. and Jaworski, J.G. 1999. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J. 17: 119–130.

    Google Scholar 

  • Venkateswari, J., Kanrar, S., Kirti, P.B., Malathi, V.G. and Chopra, V.L. 1999. Molecular cloning and characterization of FATTY ACID ELONGATION1 (BjFAE1) gene ofBrassica juncea. J. Plant Biochem. Biotechnol. 8: 53–55.239

    Google Scholar 

  • von Wettstein-Knowles, P.M. 1993. Waxes, cutin, and suberin. In: T.S. Moore Jr. (Ed.) Lipid Metabolism in Plants, CRC Press, Boca Raton, FL, pp. 127–166.

    Google Scholar 

  • Weier, D., Hanke, C., Eickelkamp, A., Lühs, W., Dettendorfer, J., Schaffert, E., Möllers, C., Friedt, W., Wolter, F.P. and Frentzen, M. 1997. Trierucoylglycerol biosynthesis in transgenic plants of rapeseed (Brassica napus L.). Fett/Lipid 99: 160–165.

    Google Scholar 

  • Weier, D., Lühs, W., Dettendorfer, J. and Frentzen, M. 1998. sn-1-Acylglycerol-3-phosphate acyltransferase of Escherichia coli causes insertion of cis-11 eicosenoic acid into the sn-2 position of transgenic rapeseed oil. Mol. Breed. 4: 39–46.

    Google Scholar 

  • Yephremov, A., Wisman, E., Huijser, P., Huijser, C., Wellesen, K. and Saedler, H. 1999. Characterization of the FIDDLE-HEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11: 2187–2201.

    Google Scholar 

  • Zou, J., Katavic, V., Giblin, E.M., Barton, D.L., MacKenzie, S.L., Keller, W.A., Hu. X. and Taylor, D.C. 1997. Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9: 909–923.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Lühs, W., Sonntag, K. et al. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L.. Plant Mol Biol 46, 229–239 (2001). https://doi.org/10.1023/A:1010665121980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010665121980

Navigation