Skip to main content
Log in

Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Enoyl-[acyl carrier protein]-reductases from sunflower.

Abstract

A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACP:

Acyl carrier protein

DAF:

Days after flowering

DAG:

Days after germination

ENR:

Enoyl-ACP reductase

EST:

Expressed sequence tags

FAS:

Fatty acid synthase

KAS:

Ketoacyl-ACP synthase

KAR:

Ketoacyl-ACP reductase

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brock DJH, Kass LR, Bloch K (1967) β-hydroxydecanoyl thioester dehydrase. II Mode of action. J Biol Chem 242:4432–4440

    CAS  PubMed  Google Scholar 

  • Brown JL, Ross T, McMeekin TA, Nichols PD (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37:163–173

    Article  CAS  PubMed  Google Scholar 

  • Brown AP, Affleck V, Fawcett T, Slabas AR (2006) Tandem affinity purification tagging of fatty acid biosynthetic enzymes in Synechocystis sp PCC6803 and Arabidopsis thaliana. J Exp Bot 57:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Chan DI, Vogel H (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1–19

    Article  CAS  PubMed  Google Scholar 

  • Dayan FE, Ferreira D, Wang Y-H, Khan IA, McInroy JA, Pan Z (2008) A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase. Plant Physiol 147:1062–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Boer GJ, Kater MM, Fawcet T, Slabas AR, Nijkamp HJJ, Stuije AR (1998) The NADH-specific enoyl-[ACP]-reductase: characterization of a housekeeping gene involved in storage lipid synthesis in seed of arabidopsis and other plant species. Plant Physiol Biochem 36:473–486

    Article  Google Scholar 

  • DiRusso CC, Black PN, Weimar JD (1999) Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 38:129–197

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Fawcett T, Simon WJ, Swinhoe R, Shanklin J, Nishida J, Christie WW, Slabas AR (1994) Expression of mRNA and steady-state levels of protein isoforms of enoyl-ACP reductase from Brassica napus. Plant Mol Biol 26:155–163

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fisher M, Kroon JT, Martindale W, Stuitje AR, Slabas AR, Rafferty JB (2000) The X-ray structure of Brassica napus β-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure 8:339–347

    Article  CAS  PubMed  Google Scholar 

  • Garwin JL, Klages AL, Cronan JE (1980) β-Ketoacyl-acyl carrier protein synthase II of Escherichia coli. J Biol Chem 255:3263–3265

    CAS  PubMed  Google Scholar 

  • Goksøyr J (1967) Evolution of eukaryotic cells. Nature 214:1161

    Article  PubMed  Google Scholar 

  • Goldman N (1990) Maximum likelihood inference of phylogenetic trees, with special reference to a poisson process model of DNA substitution and to parsimony analyses. Syst Zool 39:345–361

    Article  Google Scholar 

  • González-Mellado D, von Wettstein-Knowles P, Garcés R, Martínez-Force E (2010) The role of β-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower. Planta 231:1277–1289

    Article  PubMed  Google Scholar 

  • Grogan DW, Cronan JE Jr (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Mol Biol 39:101–138

    Article  CAS  Google Scholar 

  • Harwood JL (2005) Fatty acid biosynthesis. In: Murphy DJ (ed) Plant lipids: biology, utilisation and manipulation. Blackwell Publishing, Oxford, pp 27–66

    Google Scholar 

  • Jörnvall H, Persson B, Krook M, Atrian S, González-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013

    Article  PubMed  Google Scholar 

  • Kapoor M, Mukhi PL, Surolia N, Suguna K, Surolia A (2004) Kinetic and structural analysis of the increased affinity of enoyl-ACP (acyl-carrier protein) reductase for triclosan in the presence of NAD+. Biochem J 381:725–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kater MM, Koningstein GM, Nijkamp HJJ, Stuitje AR (1991) cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli. Plant Mol Biol 17:895–909

    Article  CAS  PubMed  Google Scholar 

  • Kater MM, Koningstein GM, Nijkamp HJJ, Stuitje AR (1994) The use of a hybrid genetic system to study the functional relationship between prokaryotic and plant multi-enzyme fatty acid synthetase complexes. Plant Mol Biol 25:771–790

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh KL, Jçrnvall H, Persson B, Oppermann U (2008) The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, ArondelV, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, XuC, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. The Arabidopsis Book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0161

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Force E, Cantisan S, Serrano-Vega MJ, Garces R (2000) Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Planta 211:673–678

    Article  CAS  PubMed  Google Scholar 

  • May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGuire KA, Siggaard-Andersen M, Bangera MG, Olsen JG, von Wettstein-Knowles P (2001) β-Ketoacyl-[acyl carrier protein] synthase I of Escherichia coli: aspects of the condensation mechanism revealed by analyses of mutations in the active site pocket. Biochemistry 40:9836–9845

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Pérez AJ, Martínez-Force E, Garcés R, Salas JJ (2011) Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): cloning and characterization of a C4-hydroxylase gene and a new paralogous 8-desaturase gene. J Plant Physiol 168:831–839

    Article  PubMed  Google Scholar 

  • Mou Z, He Y, Dai Y, Liu X, Li J (2000) Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 12:405–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oppermann U, Filling C, Hult M, Shafqat N, Wua X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143–144:247–253

    Article  PubMed  Google Scholar 

  • Persson B, Kallberg Y, Oppermann U, Jörnvall H (2003) Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143–144:271–278

    Article  PubMed  Google Scholar 

  • Poghosyan ZP, Giannoulia K, Katinakis P, Murphy DJ, Hatzopoulos P (2005) Temporal and transient expression of olive enoyl-[ACP]-reductase gene during flower and fruit development. Plant Physiol Biochem 43:37–44

    Article  CAS  PubMed  Google Scholar 

  • Rafferty JB, Simon JW, Stuitje AR, Slabas AR, Fawcett T, Rice DW (1994) Crystallization of the NADH-specific enoyl acyl carrier protein reductase from Brassica napus. J Mol Biol 237:240–242

    Article  CAS  PubMed  Google Scholar 

  • Rafferty JB, Simon JW, Baldock C, Artymiuk PJ, Baker PJ, Stuitje AR, Slabas AR, Rice DW (1995) Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase. Structure 3:927–938

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 7:501–506

    Article  Google Scholar 

  • Serrano-Vega MJ, Garcés R, Martínez-Force E (2005) Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L). Planta 221:868–880

    Article  CAS  PubMed  Google Scholar 

  • Shimakata T, Stumpf PK (1982a) Purification and characterizations of β-ketoacyl-[acyl-carrier-protein] reductase, β-hydroxyacyl-[acyl-carrier-protein] dehydrase, and enoyl-[acyl-carrier-protein] reductase from Spinacia oleracea leaves. Arch Biochem Biophys 218:77–91

    Article  CAS  PubMed  Google Scholar 

  • Shimakata T, Stumpf PK (1982b) The prokaryotic nature of the fatty acid synthetase of developing Carthamus tinctorius L. (safflower) seeds. Arch Biochem Biophys 217:144–154

    Article  CAS  PubMed  Google Scholar 

  • Shimakata T, Stumpf PK (1982c) Fatty acid synthetase of Spinacia oleracea leaves. Plant Physiol 69:1257–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slabas AR, Sidebottom CM, Hellyer A, Kessell RMJ, Tombs MP (1986) Induction, purification and characterization of NADH-specific enoyl acyl carrier protein reductase from developing seed of oil seed rape (Brassica napus). Biochim Biophys Acta 877:271–280

    Article  CAS  Google Scholar 

  • Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42:289–317

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venegas-Calerón M, Muro-Pastor AM, Garcés R, Martínez-Force E (2006) Functional characterization of a plastidial omega-3 desaturase from sunflower (Helianthus annuus) in cyanobacteria. Plant Physiol Biochem 44:517–525

    Article  PubMed  Google Scholar 

  • Ward WHJ, Holdgate GA, Rowsell S, McLean EG, Pauptit RA, Clayton E, Nichols WW, Colls JG, Minshull CA, Jude DA, Mistry A, Timms D, Camble R, Hales NJ, Britton CJ, Taylor IWF (1999) Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by Triclosan. Biochemistry 38:12514–12525

    Article  CAS  PubMed  Google Scholar 

  • White SW, Zheng J, Zhang YM, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Alicia M. Muro-Pastor for help with Southern blot analysis and A. González-Callejas and B. Lopez-Cordero for skilful technical assistance. This work was supported by the "Ministerio de Economia y Competitividad" and FEDER, project AGL2011-23187. IGT was supported by a JAE-CSIC contract in part financed by European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Venegas-Calerón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Thuillier, I., Venegas-Calerón, M., Garcés, R. et al. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes. Planta 241, 43–56 (2015). https://doi.org/10.1007/s00425-014-2162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2162-7

Keywords

Navigation