Skip to main content
Log in

Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A GFP excision assay was developed to monitor the excision of Ac introduced into rice by Agrobacterium-mediated transformation. The presence of a strong double enhancer element of the CaMV 35S promoter adjacent to the Ac promoter induced very early excision, directly after transformation into the plant cell, exemplified by the absence of Ac in the T-DNA loci. Excision fingerprint analysis and characterization of transposition events from related regenerants revealed an inverse correlation between the number of excision events and transposed Ac copies, with single early excisions after transformation generating Ac amplification. New transpositions were generated at a frequency of 15–50% in different lines, yielding genotypes bearing multiple insertions, many of which were inherited in the progeny. The sequence of DNA flanking Ac in three representative lines provided a database of insertion tagged sites suitable for the identification of mutants of sequenced genes that can be examined for phenotypes in a reverse genetics strategy to elucidate gene function. Remarkably, two-thirds of Ac tagged sites showing homology to sequences in public databases were in predicted genes. A clear preference of transposon insertions in genes that are either predicted by protein coding capacity or by similarity to ESTs suggests that the efficiency of recovering knockout mutants of genes could be about three times higher than random. Linked Ac transposition, suitable for targeted tagging, was documented by segregation analysis of a crippled Ac element and by recovery of a set of six insertions in a contiguous sequence of 70 kb from chromosome 6 of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aarts, M.G.M., Corzaan, P., Stiekema, W.J. and Pereira, A. 1995. A two-element Enhancer-Inhibitor transposon system in Arabidopsis thaliana. Mol. Gen. Genet. 247: 555–564.

    Google Scholar 

  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Google Scholar 

  • Baker, B., Coupland, G., Fedoroff, N., Starlinger, P. and Schell, J. 1987. Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J. 6: 1547–1554.

    Google Scholar 

  • Balcells, L. and Coupland, G. 1994. The presence of enhancers adjacent to the Ac promoter increases the abundance of transposase mRNA and alters the timing of Ds excision in Arabidopsis.Plant Mol. Biol. 24: 789–798.

    Google Scholar 

  • Balcells, L., Sundberg, E. and Coupland, G. 1994. A heat-shock promoter fusion to the Ac transposase gene drives inducible transposition of a Ds element during Arabidopsis embryo development. Plant J. 5: 755–764.

    Google Scholar 

  • Benfey, P.N. and Chua, N.-H. 1990. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250: 959–966.

    Google Scholar 

  • Bingham, P.M., Levis, R. and Rubin, G.M. 1981. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell 25: 693–704.

    Google Scholar 

  • Charng, Y.-C., Pfitzner, U.M. and Pfitzner, A.J.P. 1995. Fusion of the inducible promoter of the PR-1a gene to the Activator transposase gene can transactivate excision of a non-autonomous transposable element by external and by internal stimuli. Plant Sci. 106: 141.

    Google Scholar 

  • Chin, H.G., Choe, M.S., Lee, S.H. et al., 1999. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19: 615–623.

    Google Scholar 

  • Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H. and Sheen J. 1996. Engineered GFP as a vital reporter in plants. Curr. Biol. 6: 325–330.

    Google Scholar 

  • Chuck, G., Robbins, T., Nijjar, C., Ralston, E., Courtney-Gutterson, N. and Dooner, H.K. 1993. Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5: 371–378.

    Google Scholar 

  • Davis, S.J. and Vierstra, R.D. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36: 521–528.

    Google Scholar 

  • Earp, D.J., Lowe B. and Baker B. 1990. Amplification of genomic sequences flanking transposable elements in host and heterologous plants: a tool for transposon tagging and genome characterization. Nucl. Acids Res. 18: 3271–3278.

    Google Scholar 

  • Enoki, H., Izawa, T., Kawahara, M., Komatsu, M., Koh, S., Kyozuka, J. and Shimamoto K. 1999. Ac as a tool for the functional genomics of rice. Plant J. 19: 605–613.

    Google Scholar 

  • Finnegan, E.J., Taylor, B.H., Craig, S. and Dennis, E.S. 1989. Transposable elements can be used to study cell lineages in transgenic plants. Plant Cell 1: 757–764.

    Google Scholar 

  • Greenblatt, I. M. 1984. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element Modulator, in maize. Genetics 108: 471–485.

    Google Scholar 

  • Haring, M.A., Rommens, C.M.T., Nijkamp, H.J.J. and Hille, J. 1991. The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Mol. Biol. 16: 449–461.

    Google Scholar 

  • Hehl, R. and Baker, B. 1989. Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants. Mol. Gen. Genet. 217: 53–59.

    Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T. and Kumasiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Google Scholar 

  • Izawa, T., Miyazaki, C., Yamamoto, M., Terada, R., Iida, S. and Shimamoto, K. 1991. Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.) Mol. Gen. Genet. 227: 391–396.

    Google Scholar 

  • Izawa, T., Ohnishi, T., Nakano. et al., 1997. Transposon tagging in rice. Plant Mol. Biol. 35: 219–229.

    Google Scholar 

  • James, D.W. Jr., Lim, E., Keller, J., Plooy, I., Ralston, E. and Dooner, H.K. 1995. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon Activator. Plant Cell 7: 309–319.

    Google Scholar 

  • Jeon, J.S., Lee, S., Jung, K.H. et al., 2000. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22: 561–750.

    Google Scholar 

  • Jones, J.D.G., Carland, F.M., Maliga, P. and Dooner, H.K. 1989. Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science 244: 204–207.

    Google Scholar 

  • Jones, J.D.G., Carland, F.M., Lin, E., Ralston, E. and Dooner, H.K. 1990. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707.

    Google Scholar 

  • Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J. and Jones, J.D.G. 1994. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793.

    Google Scholar 

  • Krysan, P.J., Young, J.C. and Sussman, M.R. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283–2290.

    Google Scholar 

  • Lawrence, G.J., Finnegan, E.J., Ayliff, M.A. and Ellis, J.G. 1995. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7: 1195–1206.

    Google Scholar 

  • Lin, X., Kaul, S., Rounsley, S. et al., 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–876.

    Google Scholar 

  • Mayer, K., Schuller, C., Wambutt, R. et al., 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature402: 769–777.

    Google Scholar 

  • McClintock, B. 1947. Cytogenetic studies of maize and Neurospora. Carnegie Inst. Wash. Yearb. 46: 146–152.

    Google Scholar 

  • Murai, N., Li, Z.J., Kawagoe, Y. and Hayashimoto, A. 1991. Transposition of the maize activator element in transgenic rice plants. Nucl. Acids Res. 19: 617–626.

    Google Scholar 

  • Nakagawa, Y., Machida, C., Machida, Y., Toriyama, K. 2000. Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol. 41: 733–742.

    Google Scholar 

  • Parinov, S., Sevugan, M., Ye, D., Yang, W.-C., Kumaran, M. and Sundaresan, V. 1999. Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 2263–2270.

    Google Scholar 

  • Pereira, A. 1998. Heterologous transposon tagging systems. In: K. Lindsey (Ed.) Transgenic Plant Research, Harwood Academic Publishers, UK, pp. 91–108.

    Google Scholar 

  • Pereira, A. and Aarts, M.G.M. 1998. Transposon tagging with the En-I system. In: J. Martinez-Zapater and J. Salinas (Eds.) Arabidopsis Protocols, Humana Press Totowa, NJ, pp. 329–338.

    Google Scholar 

  • Peterson, P. W. and Yoder, J. I. 1995. Amplification of Ac in tomato is correlated with high Ac transposition activity. Genome 38: 265–276.

    Google Scholar 

  • Pietrzak, M., Shillito, R. D., Hohn, T. and Potrykus, I. 1986. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucl. Acids Res. 14: 5857–5868.

    Google Scholar 

  • Quackenbush, J., Liang, F., Holt, I., Pertea, G. and Upton, J. 2000. The TIGR Gene Indices: reconstruction and representation of expressed gene sequences. Nucl. Acids Res. 28: 141–145.

    Google Scholar 

  • Rueb, S., Leneman, M., Schilperoort, R.A. and Hensgens, L.A.M. 1994. Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.) Plant Cell Tissue Organ Cult. 36: 259–264.

    Google Scholar 

  • Scofield, S.R., English, J.J. and Jones, J.D.G. 1993. High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell 75: 507–517.

    Google Scholar 

  • Shimamoto, K., Miyazaki, C., Hashimoto, H., Izawa, T., Itoh, K., Terada, R., Inagaki, Y. and Iida, S. 1993. Transactivation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Mol. Gen. Genet. 239: 354–360.

    Google Scholar 

  • Sijmons, P.C., Dekker, B.M., Schrammeijer, B., Verwoerd, T.C., van den Elzen, P.J. and Hoekema, A. 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/technology 8: 217–221.

    Google Scholar 

  • Sundaresan, V. 1996. Horizontal spread of transposon mutagenesis: new uses for old elements. Trends Plant Sci. 1: 184–190.

    Google Scholar 

  • Swinburne, J., Balcells, L., Scofield, S.R., Jones, J.D.G. and Coupland, G. 1992. Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell 4: 583–595.

    Google Scholar 

  • Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C. and Baker, B. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the Interleukin-1 receptor. Cell 78: 1101–1115.

    Google Scholar 

  • Yoder, J.I. 1990. Rapid proliferation of the maize transposable element Activator in transgenic tomato. Plant Cell 2: 723–730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, R., Ouwerkerk, P.B., Taal, A.J. et al. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol Biol 46, 215–227 (2001). https://doi.org/10.1023/A:1010607318694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010607318694

Navigation