Skip to main content
Log in

Structural and Thermodynamic Analysis of Daunomycin Binding with Desoxyhexanucleotides with Different Base Sequences by NMR Spectroscopy

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Complexation of the anthracycline antibiotic daunomycin (DAU) with self-complementary desoxyhexanucleotides with different base sequences in the chain, 5′-d(CGTACG) and 5′-d(CGCGCG), is studied in aqueous solution. Homonuclear 2D-1H NMR spectroscopy (TOCSY and NOESY) and heteronuclear 1H–31P NMR spectroscopy (HMBC) are used for complete assignment of the nonexchangeable proton resonances and the phosphorus signals and for qualitative determination of preferable DAU binding sites, respectively. Daunomycin is preferably intercalated into the first d(CG)-site of each hexanucleotide, and the aminosaccharide ring of DAU lies in the minor groove of the hexamer duplex, partly overlapping the third base pair. Quantitative analysis of DAU complexation with desoxyhexanucleotides was done by analyzing the concentration and temperature dependences of the DAU proton chemical shifts; the equilibrium reaction constants and the thermodynamic parameters of the formation of the 1:1, 1:2, 2:1, and 2:2 DAU complexes with hexamers, as well as the limiting values of the DAU proton chemical shifts were determined in aqueous solution. The antibiotic preferably binds with the triplet sections of the nucleotide sequence containing two neighboring CG-pairs of nitrogen bases flanked by the AT-pair in 5′-d(CGTACG) compared to the triplets consisting of a sequence of three CG-pairs in the 5′-d(CGCGCG) hexamer. The specific binding of daunomycin depends on the character of the hydrophobic interactions of the aminosaccharide ring of the antibiotic in the minor groove of the DNA double helix. Calculations have been carried out to determine the most probable spatial structures of the 1:2 DAU–desoxyhexanucleotide complexes; the results agree well with X-ray diffraction data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Arcamone and S. Penco, Anthracyclines and Anthracenedione-Based Anticancer Agents, J. W. Lown (ed.), Elsevier, New York (1988).

    Google Scholar 

  2. E. F. Gale, E. Cundliffe, P. E. Reynolds, et al., The Molecular Basis of Antibiotic Action, Wiley, New York (1981).

    Google Scholar 

  3. F. Boulad and N. A. Kernan, Cancer Invest., 11, 534-553 (1993).

    Google Scholar 

  4. S. Neidle and Z. Abraham, CRC Crit. Rev. Biochem., 17, 73-121 (1984).

    Google Scholar 

  5. S. Neidle and M. Sanderson, Molecular Aspects of Anti-Cancer Drug Action, S. Neidle and M. J. Waring (eds.), Macmillan (1983), pp. 35-57.

  6. J. B. Chaires, Biochemistry, 22, 4204-4211 (1983).

    Google Scholar 

  7. J. B. Chaires, N. Dattagupta, and D. M. Crothers, ibid., 21, 3933-3940 (1982).

    Google Scholar 

  8. J. B. Chaires, K. R. Fox, J. E. Herrera, et al., ibid., 26, 8227-8236 (1987).

    Google Scholar 

  9. J. B. Chaires, J. E. Herrera, and M. Waring, ibid., 29, 6145-6153 (1990).

    Google Scholar 

  10. D. D. Newlin, K. J. Miller, and D. F. Pilch, Biopolymers, 23, 139-158 (1984).

    Google Scholar 

  11. K. X. Chen, N. Gresh, and B. Pullman, J. Biomol. Struct. Dyn., 3, 445-466 (1985).

    Google Scholar 

  12. B. Pullman, Adv. Drug Res., 18, 1-113 (1989).

    Google Scholar 

  13. D. B. Davies, L. N. Djimant, and A. N. Veselkov, Nucleos. Nucleot., 13, 637-655 (1994).

    Google Scholar 

  14. D. B. Davies and A. N. Veselkov, J. Chem. Soc., Faraday Trans., 92, 3545-3557 (1996).

    Google Scholar 

  15. S. A. Bailey, D. E. Graves, R. Rill, and G. Marsch, Biochemistry, 32, 5881-5887 (1993).

    Google Scholar 

  16. S. A. Bailey, D. E. Graves, and R. Rill, ibid., 33, 11493-11500 (1994).

    Google Scholar 

  17. D. B. Davies, L. Karawajew, and A. N. Veselkov, Biopolymers, 38, 745-757 (1996).

    Google Scholar 

  18. A. N. Veselkov, R. J. Eaton, S. F. Baranovskii, et al., Zh. Strukt. Khim., 40, 276-286 (1999).

    Google Scholar 

  19. R. J. Eaton, D. A. Veselkov, V. I. Pakhomov, et al., Molek. Biol., 33, 709-718 (1999).

    Google Scholar 

  20. D. B. Davies, R. J. Eaton, S. F. Baranovskii, and A. N. Veselkov, to appear in: J. Biomol. Struct. Dyn.

  21. A. H. J. Wang, G. Ughetto, G. J. Quigley, and A. Rich, Biochemistry, 26, 1152-1163 (1987).

    Google Scholar 

  22. C. A. Frederick, L. D. Williams, G. Ughetto, et al., ibid., 29, 2538-2549 (1990).

    Google Scholar 

  23. C. M. Nuss, L. Van Meervelt, S. Zhang, et al., J. Mol. Biol., 222, 167-177 (1991).

    Google Scholar 

  24. Y. M. Huang and D. R. Phillips, Biophys. Chem., 6, 363-368 (1977).

    Google Scholar 

  25. J. B. Chaires, N. Dattagupta, and D. M. Crothers, Biochemistry, 21, 3927-3932 (1982).

    Google Scholar 

  26. A. N. Veselkov, L. N. Djimant, P. A. Bolotin, et al., Molek. Biol., 29, 326-338 (1995).

    Google Scholar 

  27. A. Bax and M. F. Summers, J. Am. Chem. Soc., 108, 2093-2094 (1986).

    Google Scholar 

  28. A. M. Gronenborn, G. M. Clore, and B. J. Kimber, Biochem. J., 221, 723-736 (1984).

    Google Scholar 

  29. S. Steinkopf, A. Garoufis, W. Nerdal, and E. Sletten, Act. Chem. Scand., 49, 495-502 (1995).

    Google Scholar 

  30. A. N. Veselkov, D. B. Davies, L. N. Djimant, et al., Biopolim. Klet., 7, 15-22 (1991).

    Google Scholar 

  31. A. N. Veselkov, L. N. Djimant, V. V. Kodintsev, et al., Biofizika, 40, 283-292 (1995).

    Google Scholar 

  32. R. J. Eaton, D. A. Veselkov, S. F. Baranovskii, et al., Khim. Fiz., 19, 98-104 (2000).

    Google Scholar 

  33. D. B. Davies, L. N. Djimant, S. F. Baranovsky, and A. N. Veselkov, Biopolymers, 42, 285-295 (1997).

    Google Scholar 

  34. D. B. Davies, L. N. Djimant, and A. N. Veselkov, Nucleos. Nucleot., 13, 657-671 (1994).

    Google Scholar 

  35. A. T. Brunger, X-PLOR, Version 3.1, A System for X-Ray Crystallography and NMR, Yale University Press (1992).

  36. C. Giessner-Prettre and B. Pullman, Quart. Rev. Biophys., 20, 113-172 (1987).

    Google Scholar 

  37. V. I. Poltev and A. V. Teplukhin, Int. J. Quant. Chem., 35, 91-102 (1989).

    Google Scholar 

  38. R. E. Dickerson, J. Biomol. Struct. Dyn., 6, 627-634 (1989).

    Google Scholar 

  39. S. Neidle and G. Taylor, Biochim. Biophys. Acta, 479, 450-459 (1977).

    Google Scholar 

  40. D. D. Albergo, L. A. Marky, K. J. Breslauer, and D. H. Turner, Biochemistry, 20, 1409-1413 (1981).

    Google Scholar 

  41. M. Petersheim and D. H. Turner, ibid., 22, 256-263 (1983).

    Google Scholar 

  42. K. J. Breslauer, R. Frank, H. Blocker, and L. A. Marky, Proc. Natl. Acad. Sci. USA, 83, 3746-3750 (1986).

    Google Scholar 

  43. J. B. Chaires, S. Satyanarayana, D. Suh, et al., Biochemistry, 35, 2047-2053 (1996).

    Google Scholar 

  44. Q. Yan, W. Priebe, J. B. Chaires, and R. S. Czernuszewicz, Biospectroscopy, 3, 307-316 (1997).

    Google Scholar 

  45. I. Haq, J. E. Ladbury, B. Z. Chowdhry, et al., Mol. Biol., 271, 244-257 (1997).

    Google Scholar 

  46. J. B. Chaires, Curr. Opin. Str. Biol., 8, 314-320 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselkov, A.N., Eaton, R.J., Pakhomov, V.I. et al. Structural and Thermodynamic Analysis of Daunomycin Binding with Desoxyhexanucleotides with Different Base Sequences by NMR Spectroscopy. Journal of Structural Chemistry 42, 193–206 (2001). https://doi.org/10.1023/A:1010442713501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010442713501

Keywords

Navigation