Skip to main content
Log in

Quorum Sensing, or How Bacteria “Talk” to Each Other

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Reviewed are recent advances in studying the quorum-sensing systems, which regulate gene expression depending on population density. Low-molecular-weight acyl derivatives of L-homoserine lactone (N-AHL) freely diffuse through cell membranes and determine cell-to-cell communication in bacteria. The quorum-sensing systems have first been found to regulate bioluminescence in marine bacteria Photobacterium(Vibrio) fischeriand Vibrio harveyi. Such systems are widespread and control expression of genes for virulence factors, proteases, antibiotics, etc., in various Gram-negative bacteria, including plant, animal, and human pathogens. Quorum sensing is a prominent example of social behavior in bacteria, as signal exchange among individual cells allows the entire population to choose an optimal way of interaction with the environment and with higher organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuqua, W.C., Winans, S.C., and Greenberg, E.P., J. Bacteriol., 1994, vol. 176, pp. 269–275.

    Google Scholar 

  2. Swift, S., Bainton, N.J., and Winson, M.K., Trends Microbiol., 1994, vol. 2, pp. 193–197.

    Google Scholar 

  3. Swift, S., Stewart, G.S., and Williams, P., Trends Microbiol., 1996, vol. 4, pp. 463–466.

    Google Scholar 

  4. Fuqua, W.C. and Greenberg, E.P., Curr. Opin. Microbiol., 1998, vol. 1, pp. 183–189.

    Google Scholar 

  5. Strauss, E., Science, 1999, vol. 284, pp. 1302–1304.

    Google Scholar 

  6. Salmond, G.P., Bycroft, B.W., Stewart, G.S., and Williams, P., Mol. Microbiol., 1995, vol. 16, pp. 615–624.

    Google Scholar 

  7. Bassler, B.L., Curr. Opin. Microbiol., 1999, vol. 2, pp. 582–587.

    Google Scholar 

  8. Novick, R.P. and Muir, T.W., Curr. Opin. Microbiol., 1999, vol. 2, pp. 40–45.

    Google Scholar 

  9. Debabov, V.G., Mol. Biol., 1999, vol. 33, pp. 1074–1084.

    Google Scholar 

  10. Oleskin, A.V., Botvinko, I.V., and Tsavkelova, E.A., Mikrobiologiya, 2000, vol. 69, pp. 309–327.

    Google Scholar 

  11. Nealson, K.H., Platt, T., and Hastings, J.W., J. Bacteriol., 1970, vol. 104, pp. 313–322.

    Google Scholar 

  12. Eberhard, A., J. Bacteriol., 1972, vol. 109, pp. 1101–1105.

    Google Scholar 

  13. Ulitzur, S. and Dunlop, P., Photochem. Photobiol., 1995, vol. 62, pp. 625–632.

    Google Scholar 

  14. Ulitzur, S., Microbial Ecology and Infectious Disease, Rosenberg, E., Ed., Washington, DC: Am. Soc. Microbiol., 1999, pp. 123–132.

    Google Scholar 

  15. Fuqua, W.C. and Winans, S.C., J. Bacteriol., 1994, vol. 176, pp. 2796–2808.

    Google Scholar 

  16. Fuqua, W.C., Winans, S.C., and Greenberg, E.P., Annu. Rev. Microbiol., 1996, vol. 50, pp. 727–751.

    Google Scholar 

  17. Ruby, E.C. and McFall-Ngai, M.J., J. Bacteriol., 1992, vol. 174, pp. 4865–4870.

    Google Scholar 

  18. Engebrecht, J., Nealson, K., and Silverman, M., Cell, 1983, vol. 32, pp. 773–781.

    Google Scholar 

  19. Cohn, D.H., Ogden, R.C., Abelson, J.N., et al., Proc. Natl. Acad. Sci. USA, 1983, vol. 80, pp. 120–123.

    Google Scholar 

  20. Chatterjee, J. and Meighen, E.A., Photochem. Photobiol., 1995, vol. 62, pp. 641–650.

    Google Scholar 

  21. Stewart, G.S., Microbiology, 1997, vol. 143, pp. 2099–2108.

    Google Scholar 

  22. Winson, M.K., Swift, S., Fish, L., et al., FEMS Microbiol. Lett., 1998, vol. 163, pp. 185–192.

    Google Scholar 

  23. Meighen, E.A., Microbiol. Rev., 1991, vol. 55, pp. 123–142.

    Google Scholar 

  24. Baldwin, T.O., Christopher, J.A., Raushel, F.M., et al., Curr. Opin. Struct. Biol., 1995, vol. 5, pp. 798–809.

    Google Scholar 

  25. Tu, S.-C. and Mager, H.L., Photochem. Photobiol., 1995, vol. 62, pp. 615–624.

    Google Scholar 

  26. Eberhard, A., Burlingame, A.L., Eberhard, C., et al., Biochemistry, 1981, vol. 20, pp. 2444–2449.

    Google Scholar 

  27. Kaplan, H.B. and Greenberg, E.P., J. Bacteriol., 1995, vol. 163, pp. 1210–1214.

    Google Scholar 

  28. Egland, K.A. and Greenberg, E.P., Mol. Microbiol., 1999, vol. 31, pp. 1197–1204.

    Google Scholar 

  29. Egland, K.A. and Greenberg, E.P., J. Bacteriol., 2000, vol. 182, pp. 805–811.

    Google Scholar 

  30. Dunlop, P.V. and Greenberg, E.P., J. Bacteriol., 1988, vol. 170, pp. 4040–4046.

    Google Scholar 

  31. Zavil'gel'sky, G.B. and Manukhov, I.V., Genetika, 1994, vol. 30, pp. 337–341.

    Google Scholar 

  32. Zavil'gel'sky, G.B. and Manukhov, I.V., Mol. Biol., 1997, vol. 31, pp. 945–949.

    Google Scholar 

  33. Ulitzur, S., Matin, A., Fraley, C., and Meighen, E.A., Curr. Microbiol., 1997, vol. 35, pp. 336–342.

    Google Scholar 

  34. Ulitzur, S., J. Biolumin. Chemilumin., 1998, vol. 13, pp. 185–188.

    Google Scholar 

  35. Zavil'gel'sky, G.B., Eroshnikov, G.E., Manukhov, I.V., et al., Mol. Biol., 1999, vol. 33, pp. 797–802.

    Google Scholar 

  36. Tchurikov, N.A., Chistyakova, L.G., Zavilgelsky, G.B., et al., J. Biol. Chem., 2000, vol. 275, pp. 26523–26529.

    Google Scholar 

  37. Showalter, R., Martin, M., and Silverman, M., J. Bacteriol., 1990, vol. 172, pp. 2946–2954.

    Google Scholar 

  38. Swartzman, E., Silverman, M., and Meighen, E.A., J. Bacteriol., 1992, vol. 174, pp. 7490–7493.

    Google Scholar 

  39. Swartzman, E. and Meighen, E.A., J. Biol. Chem., 1993, vol. 268, pp. 16 706–16 716.

    Google Scholar 

  40. Chatterjee, J., Miyamoto, C.M., and Meighen, E.A., Mol. Microbiol., 1996, vol. 20, pp. 415–426.

    Google Scholar 

  41. Miyamoto, C.M., Byers, D., Graham, A.F., and Meighen, E.A., J. Bacteriol., 1987, vol. 169, pp. 247–253.

    Google Scholar 

  42. Miyamoto, C.M., Sun, W., and Meighen, E.A., Biochim. Biophys. Acta, 1998, vol. 1384, pp. 356–364.

    Google Scholar 

  43. Miyamoto, C.M., Graham, A.D., Boylan, M., et al., J. Bacteriol., 1985, vol. 161, pp. 995–1001.

    Google Scholar 

  44. Miyamoto, C., Boylan, M., Cragg, L., and Meighem, E.A., J. Biolumin. Chemilumin., 1989, vol. 3, pp. 193–199.

    Google Scholar 

  45. Jobling, M.G. and Holmes, R.K., Mol. Microbiol., 1997, vol. 26, pp. 1023–1034.

    Google Scholar 

  46. McCarter, L.L., J. Bacteriol., 1998, vol. 180, pp. 3166–3173.

    Google Scholar 

  47. McDougald, D., Rice, S.A., and Kjelleberg, S., Gene, 2000, vol. 248, pp. 213–221.

    Google Scholar 

  48. Szittner, R. and Meighen, E.A., J. Biol. Chem., 1990, vol. 265, pp. 16 581–16 587.

    Google Scholar 

  49. Illarionov, B.A., Blinov, V.M., Donchenko, A.P., et al., Gene, 1990, vol. 86, pp. 89–94.

    Google Scholar 

  50. Manukhov, I.V., Rastorguev, S.M., Eroshnikov, G.E., et al., Genetika, 2000, vol. 36, pp. 322–330.

    Google Scholar 

  51. Pearson, J.P., Gray, K.M., Passador, L., et al., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 197–200.

    Google Scholar 

  52. Pearson, J.P., Passador, L., Iglewski, B.H., and Greenberg, E.P., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 1490–1494.

    Google Scholar 

  53. Sperandio, V., Mellies, J.L., Nguyen, W., et al., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 15196–15201.

    Google Scholar 

  54. Sitnikov, D.M., Schineller, J.B., and Baldwin, T.O., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 336–341.

    Google Scholar 

  55. Garcia-Lara, J., Shang, L.H., and Rothfield, L.I., J. Bacteriol., 1996, vol. 178, pp. 2742–2748.

    Google Scholar 

  56. Ahmer, B.M., van Reeuwijk, J., Timmers, C.D., et al., J. Bacteriol., 1998, vol. 180, pp. 1185–1193.

    Google Scholar 

  57. Shaw, P.D., Ping, G., Daly, S.L., et al., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 6036–6041.

    Google Scholar 

  58. Gilson, L., Kuo, A., and Dunlop, P.V., J. Bacteriol., 1995, vol. 177, pp. 6946–6951.

    Google Scholar 

  59. Kuo, A., Callahan, S.M., and Dunlop, P.V., J. Bacteriol., 1996, vol. 178, pp. 971–976.

    Google Scholar 

  60. Hanelka, B.L., Parsek, M.R., Val, D.L., et al., J. Bacteriol., 1999, vol. 181, pp. 5766–5770.

    Google Scholar 

  61. Callahan, S.M. and Dunlap, P.V., J. Bacteriol., 2000, vol. 182, pp. 2811–2822.

    Google Scholar 

  62. Bainton, N.J., Bycroft, B.W., Chhabra, S.R., et al., Gene, 1992, vol. 116, pp. 87–91.

    Google Scholar 

  63. Bainton, N.J., Stead, P., Chhabra, S.R., et al., Biochem. J., 1992, vol. 288, pp. 997–1004.

    Google Scholar 

  64. Pearson, J.P., Pesci, E.C., and Iglewski, B.H., J. Bacteriol., 1997, vol. 179, pp. 5756–5787.

    Google Scholar 

  65. Fraser, G.M. and Hughes, C., Curr. Opin. Microbiol., 1999, vol. 2, pp. 630–635.

    Google Scholar 

  66. Eberl, L., Winson, M.K., Sternberg, C., et al., Mol. Microbiol., 1996, vol. 20, pp. 127–136.

    Google Scholar 

  67. Givskov, M., Ostling, J., Eberl, L., et al., J. Bacteriol., 1998, vol. 18, pp. 742–745.

    Google Scholar 

  68. Allison, C., Lai, H.C., Gugi, D., and Hughes, C., Mol. Microbiol., 1993, vol. 8, pp. 53–60.

    Google Scholar 

  69. Glessner, A., Smith, E.S., Iglewski, B.H., and Robinson, J.P., J. Bacteriol., 1999, vol. 181, pp. 1623–1629.

    Google Scholar 

  70. Whiteley, M., Lee, K.M., and Greenberg, E.P., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 13904–13909.

    Google Scholar 

  71. Parsek, M.R. and Greenberg, E.P., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 8789–8791.

    Google Scholar 

  72. Pesci, E.C. and Iglewski, B.H., Trends Microbiol., 1997, vol. 5, pp. 132–135.

    Google Scholar 

  73. Pesci, E.C., Milbank, J.B., Pearson, J.P., et al., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 11229–11234.

    Google Scholar 

  74. McKnight, S.L., Iglewski, B.H., and Pesci, E.C., J. Bacteriol., 2000, vol. 182, pp. 2702–2708.

    Google Scholar 

  75. Holden, M.T., Ram Chhabra, S., de Nys, R., et al., Mol. Microbiol., 1999, vol. 33, pp. 1254–1266.

    Google Scholar 

  76. Holden, M.T., Swift, S., and Williams, P., Trends Microbiol., 2000, vol. 8, pp. 101–103.

    Google Scholar 

  77. Davies, D.G., Parsek, M.R., Pearson, J.P., et al., Science, 1998, vol. 280, pp. 295–298.

    Google Scholar 

  78. Bassler, B.L., Wright, M., Showalter, R.E., and Silverman, M.R., Mol. Microbiol., 1993, vol. 9, pp. 773–786.

    Google Scholar 

  79. Bassler, B., Wright, M., and Silverman, M., Mol. Microbiol., 1994, vol. 13, pp. 273–286.

    Google Scholar 

  80. Bassler, B., Wright, M., and Silverman, M., Mol. Microbiol., 1994, vol. 12, pp. 403–412.

    Google Scholar 

  81. Freeman, J.A., Lilley, B.N., and Bassler, B.L., Mol. Microbiol., 2000, vol. 35, pp. 139–149.

    Google Scholar 

  82. Freeman, J.A. and Bassler, B.L., J. Bacteriol., 1999, vol. 181, pp. 899–906.

    Google Scholar 

  83. Freeman, J.A. and Bassler, B.L., Mol. Microbiol., 1999, vol. 31, pp. 665–677.

    Google Scholar 

  84. Lilley, B.N. and Bassler, B.L., Mol. Microbiol., 2000, vol. 36, pp. 940–954.

    Google Scholar 

  85. Surette, M.G., Miller, M.B., and Bassler, B.L., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 1639–1644.

    Google Scholar 

  86. Joyce, E.A., Bassler, B.L., and Wright, A., J. Bacteriol., 2000, vol. 182, pp. 3638–3643.

    Google Scholar 

  87. Withers, H.L. and Nordstrom, K., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 15694–15699.

    Google Scholar 

  88. Miyamoto, C.M., Lin, Y.H., and Meighen, E.A., Mol. Microbiol., 2000, vol. 38, pp. 594–607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavilgelsky, G.B., Manukhov, I.V. Quorum Sensing, or How Bacteria “Talk” to Each Other. Molecular Biology 35, 224–232 (2001). https://doi.org/10.1023/A:1010439501530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010439501530

Navigation