Skip to main content
Log in

Electron Density Calculations for Crystals with a NaCl Lattice

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The ab initio local DFT method combined with the ab initio pseudopotential technique is used to calculate valence electron densities in series of crystal substances MA (M = Li, Na, K, Rb, Ag, Mg, Ca; A = F, Cl, Br, O, S) with a NaCl lattice. Systematic variations of valence electron density depending on the atomic number of anion and cation have been found. According to electron density distribution, the compounds are classified into three groups: a) oxides and fluorides; b) sulfides, chlorides, and bromides; c) noble metal halides. In oxides and fluorides, the maximum of valence electron density is in the middle of the M–M bond. In sulfides, chlorides, and bromides, the minimum density is in the middle of the M–M bond, with two symmetric maxima or two “shoulders” (depending on the atomic number of the cation) lying away from the center of the bond. In noble metal halides, the maximum of valence density is on the metal due to the presence of metal d-states, and the density map is rotated through 90° relative to the map of alkali and alkali earth metals, so that the Hal–Hal bond becomes an analog of the M–M bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bucher, Phys. Rev. B, 35, No. 6, 2923-2928 (1974).

    Google Scholar 

  2. G. K. Wertheim, J. E. Rowe, D. N. E. Buchanan, and P. H. Citrin, ibid., 51, No. 19, 13675-13680 (1995).

    Google Scholar 

  3. P. Jonnard, F. Vergand, C. Bonnelle, et al., ibid., 57, No. 19, 12111-12118 (1998).

    Google Scholar 

  4. J. M. Gillet and P. Cortona, ibid., 60, No. 12, 8569-8574 (1999).

    Google Scholar 

  5. A. Strachan, T. Cagin, and W. A. Goddard III, ibid., 60, No. 22, 15084-15093 (1999).

    Google Scholar 

  6. A. B. Gordienko and A. S. Poplavnoi, Phys. Status Solidi (b), 208, No. 1, 407-411 (1998).

    Google Scholar 

  7. S. Lundqvist and N. H. March (eds.), Theory of Inhomogeneous Electron Gas, Plenum, New York (1983).

    Google Scholar 

  8. G. H. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B, 26, No. 8, 4199-4228 (1982).

    Google Scholar 

  9. Yu. N. Zhuravlev, Yu. M. Basalaev, and A. S. Poplavnoi, Izv. Vyssh. Uchebn. Zaved., Fiz. (1999); VINITI dep. No. 3772-B99.

  10. A. A. Radtsig and V. M. Smirnov, Atomic and Atomic Ion Parameters [in Russian], Energoatomizdat, Moscow (1986).

    Google Scholar 

  11. V. P. Zhukov, Zh. Strukt. Khim., 38, No. 3, 554-583 (1997).

    Google Scholar 

  12. D. J. Chadi and M. L. Cohen, Phys. Rev. B, 8, No. 12, 5747-5753 (1973).

    Google Scholar 

  13. T. Penkala, Essays on Crystal Chemistry [Russian translation], Khimiya, TLeningrad (1974).

  14. G. D. Mahan, Phys. Rev. B, 38, No. 11, 7841 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, Y.N., Basalaev, Y.M. & Poplavnoi, A.S. Electron Density Calculations for Crystals with a NaCl Lattice. Journal of Structural Chemistry 42, 172–176 (2001). https://doi.org/10.1023/A:1010434511684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010434511684

Keywords

Navigation