Skip to main content
Log in

Growth of Mesophilic Methanotrophs at Low Temperatures

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The optimal growth of mesophilic methanotrophic bacteria (collection strains of the genera Methylocystis, Methylomonas, Methylosinus, and Methylobacter) occurred within temperature ranges of 31–34°C and 23–25°C. None of the 12 strains studied were able to grow at 1.5 or 4°C. Representatives of six methanotrophic species (strains Mcs. echinoides2, Mm. methanica12, Mb. bovis89, Mcs. pyriformis14, Mb. chroococcum90, and Mb. vinelandii87) could grow at 10°C (with a low specific growth rate). The results obtained suggest that some mesophilic methane-oxidizing bacteria display psychrotolerant (psychrotrophic) but not psychrophilic properties. In general, the Rosso model, which describes bacterial growth rate as a function of temperature, fits the experimental data well, although, for most methanotrophs, with symmetrical approximations for the optimal temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morita, R.Y., Psychrophilic Bacteria, Bacteriol. Rev., 1975, vol. 39, pp. 144–167.

    Google Scholar 

  2. Guanot, A.M., Bacterial Life at Low Temperature: Physiological Aspects and Biotechnological Implications, J. Appl. Bacteriol., 1991, vol. 71, pp. 386–397.

    Google Scholar 

  3. Zavarzin, G.A., Bakterii i sostav atmosfery (Bacteria and the Composition of the Atmosphere), Moscow: Nauka, 1984.

    Google Scholar 

  4. Galchenko, V.F., Lein, A.Yu., and Ivanov, M.V., Biological Sinks of Methane, Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, Andreae, M.O. and Schimel, D.S., Eds., New York: Wiley, 1989, pp. 59–71.

    Google Scholar 

  5. Bowman, J.P., Jimenez, L., Rosario, I., Hazen, I.C., and Sayler, G.S., Characterization of the Methanotrophic Bacterial Community Present in a Trichlorethylene-Contaminated Subsurface Groundwater Site, Appl. Environ. Microbiol., 1993, vol. 59, pp. 2380–2387.

    Google Scholar 

  6. Vecherskaya, M.S., Galchenko, V.F., Sokolova, E.N., and Samarkin, V.A., Activity and Species Composition of Aerobic Methanotrophic Communities in Tundra Soils, Curr. Microbiol., 1993, vol. 27, pp. 181–184.

    Google Scholar 

  7. Vasil'eva, L.V., Berestovskaya, Yu.Y., and Zavarzin, G.A., Psychrophilic Acidophilic Methanotrophs from the Sphagnum Zone of Permafrost, Dokl. Akad. Nauk, 1999, vol. 368, no. 1, pp. 125–128.

    Google Scholar 

  8. Gal'chenko, V.F., Sulfate Reduction, Methanogenesis, and Methane Oxidation in Various Bodies of Water in the Banger Hills Oasis, Antarctica, Mikrobiologiya, 1994, vol. 63, no. 4, pp. 683–698.

    Google Scholar 

  9. Omel'chenko, M.V., Vasil'eva, L.V., Zavarzin, G.A., Savel'eva, N.D., Lysenko, A.M., Mityushina, L.L., Khmelenina, V.N., and Trotsenko, Yu.A., A Novel Psychrophilic Methanotroph of the Genus Methylobacter, Mikrobiologiya, 1996, vol. 65, no. 3, pp. 384–389.

    Google Scholar 

  10. Bowman, J.P., McCammon, S.A., and Skerratt, J.H., Methylosphaera hansonii gen. nov., sp. nov., a Psychrophilic Group I Methanotroph from Antarctic Marine-Salinity, Meromictic Lakes, Microbiology (Reading, UK), 1997, vol. 143, pp. 1451–1459.

    Google Scholar 

  11. Omel'chenko, M.V., Savel'eva, N.D., Vasil'eva, L.V., and Zavarzin, G.A., Pathways of Primary and Intermediary Metabolism in a Psychrophilic Methanotroph, Mikrobiologiya, 1993, vol. 62, no. 5, pp. 849–854.

    Google Scholar 

  12. Kalyuzhnaya, M.G., Khmelenina, V.N., Kotelnikova, S., Holmquist, L., Pedersen, K., and Trotsenko, Y.A., Methylomonas scandinavica sp. nov., a New Methanotrophic Psychrotrophic Bacterium Isolated from Deep Igneous Rock Ground Water of Sweden, Syst. Appl. Microbiol., 1999, vol. 22, pp. 565–572.

    Google Scholar 

  13. Gal'chenko, V.F., Abramochkina, F.N., Bezrukova, L.V., Sokolova, E.N., and Ivanov, M.V., Species Composition of the Aerobic Methanotrophic Microflora of the Black Sea, Mikrobiologiya, 1988, vol. 57, no. 2, pp. 305–311.

    Google Scholar 

  14. Gal'chenko, V.F., Lein, A.Yu., and Ivanova, M.V., Microbiological and Biogeochemical Processes in the Oceanic Water Column as Indicators of the Activity of Submarine Hydrotherms, Geokhimiya, 1989, vol. 8, no. 8, pp. 1075–1088.

    Google Scholar 

  15. Nozhevnikova, A.N., Nekrasova, V.K., and Lebedev, V.S., Low-Temperature Production and Oxidation of Methane by the Microflora of Sludge Checks, Mikrobiologiya, 1999, vol. 68, no. 2, pp. 267–272.

    Google Scholar 

  16. Reeburgh, W.S. and Heggie, D.T., Microbial Methane Consumption Reactions and Their Effect on Methane Distribution in Freshwater and Marine Environments, Limnol. Oceanogr., 1977, vol. 22, pp. 1–9.

    Google Scholar 

  17. Gal'chenko, V.F., Andreev, L.V., and Trotsenko, Yu.A., Taksonomiya i identifikatsiya obligatnykh metanotrofnykh bakterii (Taxonomy and Identification of Obligately Methanotrophic Bacteria), Pushchino: Izd-vo AN SSSR, NTsBI, 1986, pp. 1–95.

    Google Scholar 

  18. Rosso, L., Lobry, J.R., Bajard, S., and Flandrois, J.P., Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth, Appl. Environ. Microbiol., 1995, vol. 61, pp. 610–616.

    Google Scholar 

  19. Ratkowsky, D.A., Olley, R.K., Jr., McMeekin, T.A., and Ball, A., Relationship between Temperature and Growth Rate of Bacterial Cultures, J. Bacteriol., 1982, vol. 149, pp. 1–5.

    Google Scholar 

  20. Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N., and Chandler, R.E., Model for Bacterial Culture Growth Rate throughout the Entire Biokinetic Temperature Range, J. Bacteriol., 1983, vol. 154, pp. 1222–1226.

    Google Scholar 

  21. Schnute, J., A Versatile Growth Model with Statistically Stable Parameters, Can. J. Fish. Aquat. Sci., 1981, vol. 38, pp. 1128–1140.

    Google Scholar 

  22. Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E., Non-Linear Regression of Biological Temperature-Dependent Rate Models Based on Absolute Reaction-Rate Theory, J. Theor. Biol., 1981, vol. 88, pp. 719–731.

    Google Scholar 

  23. Adair, C., Kilsby, D.C., and Whittall, P.T., Comparison of the Schoolfield (Nonlinear Arrhenius) Model and the Square Root Model for Predicting Bacterial Growth in Foods, Food Microbiol., 1989, vol. 6, pp. 7–18.

    Google Scholar 

  24. Zwietering, M.H., De Koos, J.T., Hasenack, B.E., De Witt, J.C., and Van't Riet, K., Modeling of Bacterial Growth as Function of Temperature, Appl. Environ. Microbiol., 1991, vol. 57, pp. 1094–1101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kevbrina, M.V., Okhapkina, A.A., Akhlynin, D.S. et al. Growth of Mesophilic Methanotrophs at Low Temperatures. Microbiology 70, 384–391 (2001). https://doi.org/10.1023/A:1010417724037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010417724037

Navigation