Skip to main content
Log in

Thermodynamics of Dissociation and Metal Complexation of 3-Nitro-1,5-Diphenylformazan

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic parameters for dissociation of 3-nitro-1,5-diphenylformazan and its complexation by some divalent metal ions were determined in a 50%(v/v) dioxane–water mixture at constant ionic strength (0.1 M KCl) using an automatic potentiometric technique. The changes in the standard Gibbs energy ΔGo and enthalpy ΔHo accompanying the complexation were found to decrease with increasing metal ionic radius and to increase with the electronegativity, the ionization enthalpy, and the enthalpy of hydration. The order of −ΔGo and −ΔHo values were found to be Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+, in accordance with the Irving–Williams order. The complexes were stabilized by both enthalpy and entropy changes and the results suggest that the complexation is an enthalpy-driven process. The transition-series contraction energy Er(Mn–Zn) and the ligand field stabilization energy δ H were calculated from the enthalpy changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. N. Barsoum, S. K. Khella, H. M. Elwaby, A. A. Abbas, and Y. A. Ibrahim, Talanta 47, 1215 (1998).

    Google Scholar 

  2. P. M. Debnan and G. Shearer, Anal. Biochem. 250, 253 (1997).

    Google Scholar 

  3. Y. B. Liu and D. Schubert, D., J. Neurochem. 69, 2285 (1997).

    Google Scholar 

  4. Y. Kayamori, Y. Katayama, T. Matsuyama, and T. Urata, Clin. Biochem. 30, 595 (1997).

    Google Scholar 

  5. Z. Yuzhen and L. Dongzhi, Dyes and Pigments 29, 57 (1995).

    Google Scholar 

  6. V. S. Misra, S. Dhar, and B. L. Chowdhary, Pharmazie 33, 790 (1978).

    Google Scholar 

  7. D. D. Mukerjee, S. K. Shukla, and B. L. Chowdhary, Arch. Pharmacol. 314, 991 (1981).

    Google Scholar 

  8. D. D. Mukerjee and S. K. Shukla, Bokin Babai 9, 521 (1981); Chem. Abstr. 96, 65524 (1982).

    Google Scholar 

  9. D. Palut and Z. Eckstein, Bull. Acad. Polon. Sci. Ser. Sci. Chim. 12, 41 (1964).

    Google Scholar 

  10. Z. R. Bulkin, L. S. Pupko, E. F. Gavlbenko, M. N. Danchenko, and P. S. Pelkis, Fiziol. Akt. Veshchestva 2, 91 (1971); Chem. Abstr. 73, 12657 (1970).

    Google Scholar 

  11. H. M. N. H. Irving, Dithizone, (Chemical Society, London, 1977).

    Google Scholar 

  12. G. Iwantscheff, Das Dithizon und Seine Anwendung in der Mikro-und Spurenanalyse, 2nd edn., (Verlag Chemie, Weinheim, 1972).

    Google Scholar 

  13. A. M. Kiwan and A. Y. Kassim, Anal. Chim Acta 88, 177 (1977).

    Google Scholar 

  14. A. M. Kiwan and G. A. Wanas, Anal. Chim. Acta 144, 165 (1982).

    Google Scholar 

  15. A. M. Kiwan, F. M. Hassan, W. Hamdan, A. A. Bahajaj, and M. Y. Khaled, J. Coord. Chem. 22, 59 (1990).

    Google Scholar 

  16. I. Shehatta, M. N. H. Moussa, and M. A. Hafez, Thermochim. Acta 219, 121 (1993).

    Google Scholar 

  17. A. A. El-Bindary, I. Shehatta, and E. M. Mabrouk, Monatsh. Chem. 125, 373 (1994).

    Google Scholar 

  18. I. Shehatta, Z. Phys. Chem. 187, 109 (1994).

    Google Scholar 

  19. I. Shehatta and A. A. El-Bindary, Thermochim. Acta 237, 357 (1994).

    Google Scholar 

  20. A. A. El-Bindary and I. Shehatta, Monatsh. Chem. 125, 841 (1994).

    Google Scholar 

  21. I. Shehatta, A. M. Hassanein, and E. M. Mabrouk, Monatsh. Chem. 126, 851 (1995).

    Google Scholar 

  22. I. Shehatta, Functional React. Polym. 28, 183 (1996).

    Google Scholar 

  23. L. G. Van Uitert and C. G. Hass, J. Amer. Chem. Soc. 75, 451 (1953).

    Google Scholar 

  24. H. Irving and H. S. Rossotti, J. Chem. Soc., p. 3397 (1953).

  25. F. J. C. Rossotti and H. S. Rossotti, Acta Chem. Scand. 9, 1166 (1955).

    Google Scholar 

  26. G. A. Sereda, R. I. Ogloblina, V. N. Podchanova, and S. P. Bednyaagina, Zhur. Anal. Khim. 23, 1220 (1968).

    Google Scholar 

  27. Y. M. Issa, N. T. Abdel-Ghani, and O. E. Sherif, Bull. Soc. Chim. Fr. 128, 627 (1991).

    Google Scholar 

  28. N. T. Abdel-Ghani and O. E. Sherif, Thermochim. Acta 156, 69 (1989).

    Google Scholar 

  29. J. B. Gill, H. M. N. H. Irving, and A. Prescott, J. Chem. Soc. Perkin Trans. 2, 1683 (1977).

    Google Scholar 

  30. H. Irving and J. P. Williams, J. Chem. Soc., p. 3192 (1953).

  31. M. T. Beck and I. Nagybal, Chemistry of Complex Equilibria (Wiley, New York, 1990).

    Google Scholar 

  32. S. Murakami and Y. Yoshino, J. Inorg. Nucl. Chem. 43, 2070 (1981).

    Google Scholar 

  33. P. George and D. S. McClure, Progress in Inorganic Chemistry, F. A. Cotton, ed., Wiley (Interscience), New York, (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shehatta, I., Kiwan, A.M. Thermodynamics of Dissociation and Metal Complexation of 3-Nitro-1,5-Diphenylformazan. Journal of Solution Chemistry 30, 389–400 (2001). https://doi.org/10.1023/A:1010383324660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010383324660

Navigation