Skip to main content
Log in

Calorimetric Study of Micelle Formation in Polyethylene Glycol Monooctyl Ether Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The micellar solutions of polyethylene glycol monooctyl ethers C8Ej (j = 3,4,5) were investigated by employing the high-precision isothermal titration microcalorimeter at seven temperatures from 10° to 40°C. From the thermodynamic analysis of the experimental results, the differential enthalpies of solution of monomer and micelle of C8Ej were obtained separately; they are negative and increase with increasing temperature and decrease with the number j. It was found that C8Ej molecules interact with water molecules more strongly in the monomeric than in micellar state. The enthalpy of micelle formation of C8Ej was positive and decreased with rising temperature, while they increased slightly with increasing j. By comparing the results of ethylene glycol oligomers (C0Ej) with those of C8Ej, it seems reasonable to suppose that the driving force of micelle formation of C8Ej is mainly the increment of entropy caused by dehydration of hydrophilic parts at higher temperatures, while the increment caused by dehydration of hydrophobic parts becomes dominant at lower temperatures in the micellization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Schick, Nonionic Surfactant: Physical Chemistry (Marcel Dekker, New York, 1986).

    Google Scholar 

  2. V. Degiorgio, in Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, V. Degiorgio and M. Corti eds. (North-Holland, Amsterdam, 1985).

    Google Scholar 

  3. J. E. Desnoyers and G. Perron, in Handbook of Surface and Colloid Chemistry, Chap. 4, K. S. Birdi, ed. (CRC Press, New York, 1997).

    Google Scholar 

  4. K. Ogino and M. Abe, eds., Mixed Surfactant Systems (Marcel Dekker, New York, 1993).

    Google Scholar 

  5. H. Kunieda, A. Nakano, and M. Akimaru, J. Colloid Interface Sci. 170, 79 (1995).

    Google Scholar 

  6. M. Kahlweit, R. Strey, and G. Busse, J. Phys. Chem. 94, 3881 (1990).

    Google Scholar 

  7. M. Aratono, F. Nagoya, T. Takiue, and N. Ikeda, J. Colloid Interface Sci. 165, 296 (1994).

    Google Scholar 

  8. A. Amararene, M. Gindre, J.-Y. Le Huérou, W. Nicot, W. Urbach, and M. Waks, J. Phys. Chem. B 101, 10751 (1997).

    Google Scholar 

  9. M. Aratono, M. Villeneuve, T. Takiue, N. Ikeda, and H. Iyota, J. Colloid Interface Sci. 200, 161 (1998).

    Google Scholar 

  10. M. Villeneuve, H. Sakamoto, H. Minamizawa, N. Ikeda, K. Motomura, and M. Aratono, J. Colloid Interface Sci. 194, 301 (1997).

    Google Scholar 

  11. H. Iyota, N. Todoroki, N. Ikeda, K. Motomura, A. Ohta, and M. Aratono, J. Colloid Interface Sci. 216, 41 (1999).

    Google Scholar 

  12. H. Matsubara, A. Ohta, M. Kameda, N. Ikeda, and M. Aratono, Langmuir 15, 5496 (1999).

    Google Scholar 

  13. J. M. Corkill, J. F. Goodman, and J. R. Tate, Trans. Faraday Soc. 60, 996 (1964).

    Google Scholar 

  14. G. Olofsson, J. Phys. Chem. 89, 1473 (1985).

    Google Scholar 

  15. B. Andersson and G. Olofsson, J. Chem. Soc. Faraday Trans. 1 84, 4087 (1988).

    Google Scholar 

  16. B. Andersson and G. Olofsson, J. Solution Chem. 18, 1019 (1989).

    Google Scholar 

  17. K. Weckström, K. Hann, and J. B. Rosenholm, J. Chem. Soc. Faraday Trans. 90, 733 (1994).

    Google Scholar 

  18. M. Aratono, A. Ohta, N. Ikeda, A. Matsubara, K. Motomura, and T. Takiue, J. Phys. Chem. B 101, 3535 (1997).

    Google Scholar 

  19. A. Ohta, T. Takiue, N. Ikeda, and M. Aratono, J. Phys. Chem. B 102, 4809 (1998).

    Google Scholar 

  20. A. Ohta, R. Murakami, T. Takiue, N. Ikeda, and M. Aratono, J. Phys. Chem. B 104, 8592 (2000).

    Google Scholar 

  21. K. V. Schubert, R Strey, and M. Kahlweit, Progr. Colloid Polymer Sci. 84, 103 (1991).

    Google Scholar 

  22. K. V. Schubert, R. Strey, and M. Kahlweit, J. Colloid Interface Sci. 141, 21 (1991).

    Google Scholar 

  23. I. Wadsö, in Solution Calorimetry, K. N. Marsh and P. A. G. O'Hare eds. (Blackwell, Oxford, 1994).

    Google Scholar 

  24. P. Bäckman, M. Bastos, L.-E. Briggner, S. Hägg, D. Hallán, P. Lönnbro, S.-O. Nilsson, G. Olofsson, A. Schön, A. J. Suurkuusk, C. Teixeira, and I. Wadsö, Pure Appl. Chem. 66, 375 (1994).

    Google Scholar 

  25. J. N. Phillips, Trans. Faraday Soc. 51, 561 (1955).

    Google Scholar 

  26. E. Alami, N. Kamenka, A. Raharimihamina, and R. Zana, J. Colloid Interface Sci. 158, 342 (1993).

    Google Scholar 

  27. V. Dohnal, A. H. Roux, and V. Hynek, J. Solution Chem. 23, 889 (1994).

    Google Scholar 

  28. G. Klose, St. Eisenblätter, J. Galle, A. Islamov, and U Dietric, Langmuir 11, 2889 (1995).

    Google Scholar 

  29. S. A. Wieczorek, J. Chem. Themodyn. 29, 1269 (1997).

    Google Scholar 

  30. M. Jonströmer, B. Jönsson, and B. Lindman, J. Phys. Chem. 95, 3293 (1991).

    Google Scholar 

  31. C. Tanford, Y. Nozaki, and M. F. Rohde, J. Phys. Chem. 81, 1555 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, A., Takiue, T., Ikeda, N. et al. Calorimetric Study of Micelle Formation in Polyethylene Glycol Monooctyl Ether Solution. Journal of Solution Chemistry 30, 335–350 (2001). https://doi.org/10.1023/A:1010375122843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010375122843

Navigation