Skip to main content
Log in

Completing Bethe's Equations at Roots of Unity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In a previous paper we demonstrated that Bethe's equations are not sufficient to specify the eigenvectors of the XXZ model at roots of unity for states where the Hamiltonian has degenerate eigenvalues. We here find the equations which will complete the specification of the eigenvectors in these degenerate cases and present evidence that the sl 2 loop algebra symmetry is sufficiently powerful to determine that the highest weight of each irreducible representation is given by Bethe's ansatz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. A. Bethe, Zur Theorie der Metalle, Z. Physik 71:205 (1931).

    Google Scholar 

  2. R. Orbach, Linear antiferromagnetic chain with anisotropic coupling, Phys. Rev. 112:309 (1958).

    Google Scholar 

  3. L. R. Walker, Antiferromagnetic linear chain, Phys. Rev. 116:1089 (1959).

    Google Scholar 

  4. J. des Cloizeaux and M. Gaudin, Anisotropic linear magnetic chain, J. Math. Phys. 7:1384 (1966).

    Google Scholar 

  5. C. N. Yang and C. P. Yang, Oneûdimensional chain of anisotropic spinûspin interactions I. Proof of Bethe's hypothesis for ground state in a finite system, Phys. Rev. 150:321 (1966).

    Google Scholar 

  6. C. N. Yang and C. P. Yang, Oneûdimensional chain of anisotropic spinûspin interactions. II. Properties of the groundûstate energy per lattice site for an infinite system, Phys. Rev. 150:327 (1966).

    Google Scholar 

  7. M. Takahashi, One dimensional Heisenberg model at finite temperature, Prog. Theo. Phys. 46:401 (1971).

    Google Scholar 

  8. M. Takahashi and M. Suzuki, One-dimensional anisotropic Heisenberg model at finite temperatures, Prog. Theo. Phys. 48:2187 (1972).

    Google Scholar 

  9. L. D. Faddeev and L. Takhtajan Quantum inverse problem and the Heisenberg XYZ model, Russian Math. Surveys. 34(5):11 (1979).

    Google Scholar 

  10. L. D. Faddeev and L. Takhtajan, What is the spin of a spin wave? Phys. Lett. A 85:375 (1981).

    Google Scholar 

  11. F. Woynarovich, On the S z=0 excited states of an anisotropic Heisenberg chain, J. Phys. A 15:2985 (1982).

    Google Scholar 

  12. C. Destri and J. H. Lowenstein, Analysis of the Bethe-Ansatz equations of the chiralinvariant GrossûNeveu model, Nucl. Phys. B 205[FS5]:369 (1982).

    Google Scholar 

  13. O. Babelon, H. J. de Vega, and C. M. Viallet, Analysis of the Bethe ansatz equations of the XXZ model, Nucl. Phys. B 220[FS8]:13 (1983).

    Google Scholar 

  14. A. A. Vladimirov, Nonûstring twoûmagnon configurations in the isotropic Heisenberg magnet, Phys. Lett. A 105:418 (1984).

    Google Scholar 

  15. L. D. Faddeev and L. Takhtajan, The spectrum and scattering of excitations in the one dimensional isotropic Heisenberg model, J. Sov. Math. 24:241 (1984).

    Google Scholar 

  16. A. N. Kirillov, Combinatorial identities and the completeness of states for Heisenberg magnet, J. Sov. Math. 30:2298 (1985).

    Google Scholar 

  17. A. N. Kirillov, Completeness of the states of the generalized Heisenberg model, J. Sov. Math. 36:115 (1987).

    Google Scholar 

  18. A. Klümper and J. Zittartz, Eigenvalues of the eightûvertex model and the spectrum of the XYZ Hamiltonian, Z. Phys. B 71:495 (1988).

    Google Scholar 

  19. A. Klümper and J. Zittartz, The eightûvertex model: spectrum of the transfer matrix and classification of the excited states, Z. Phys. B 75:371 (1989).

    Google Scholar 

  20. F. H. L. Essler, V. E. Korepin, and K. Schoutens, Fine structure of the Bethe ansatz for the spin- 12 Heisenberg XXX model, J. Phys. A 25:4115 (1992).

    Google Scholar 

  21. R. P. Langlands and Y. Saint-Aubin, Algebro-geometric aspects of the Bethe equations, in Proceedings of the Gursey Memorial Conference. I. Strings and Symmetries, G. Atkas, C. Saclioglu, and M. Serdaroglu, eds. Lecture Notes in Physics, Vol. 447 (Springer Verlag, 1994).

  22. V. Tarasov and A. Varchenko, Bases of Bethe vectors and difference equations with regular singular points, Int. Math. Res. Notes 13:637 (1995) q-alg/9504011.

    Google Scholar 

  23. R. P. Langlands and Y. Saint-Aubin, Aspects combinatoires des equations de Bethe, in Advances in Mathematical Sciences: CRM's 25 Five Years, Luc Vinet, ed., CRM Proceedings and Lecture Notes, Vol. 11, Am. Math. Soc. (1997), p. 231.

  24. A. N. Kirillov and N. A. Liskova, Completeness of Bethe's states for the generalized XXZ model, J. Phys. A 30:1209 (1997).

    Google Scholar 

  25. M. Takahashi, Thermodynamic Bethe ansatz and condensed matter, cond-mat/9708087.

  26. R. Siddharthan, Singularities in the Bethe solution of the XXX and the XXZ Heisenberg spin chains, cond-mat/9804210.

  27. A. Ilakovac, M. Kolanović, S. Pallua, and P. Prester, Violation of the string hypothesis and the Heisenberg spin chain, Phys. Rev. B 60:7271 (1999).

    Google Scholar 

  28. J. D. Noh, D. S. Lee, and D. Kim, Incompleteness of regular solutions of the Bethe ansatz for Heisenberg XXZ spin chain, condmat/0001175.

  29. R. J. Baxter, Eight-vertex model in lattice statistics and oneûdimensional anisotropic Heisenberg chain I: Some fundamental eigenvectors, Ann. Phys. 76:1 (1973).

    Google Scholar 

  30. T. Deguchi, K. Fabricius, and B. M. McCoy, The sl 2 loop algebra symmetry of the six vertex model at roots of unity, J. Stat. Phys. 102:701 (2001).

    Google Scholar 

  31. K. Fabricius and B. M. McCoy, Bethe's equation is incomplete for the XXZ model at roots of unity, J. Stat. Phys. (in press) cond-mat 0009279.

  32. D. Biegel, diploma thesis, University of Wuppertal, 2000 (unpublished).

  33. V. Chari, Integrable representations of affine Lie-algebras, Inv. Math. 85:317 (1986); V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142:261 (1991); V. Chari and A. Pressley, Quantum affine algebras at roots of unity, Representation Theory 1:280 (1997).

    Google Scholar 

  34. R. J. Baxter, Partition function of the eight vertex model, Ann. Phys. 70:193 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabricius, K., McCoy, B.M. Completing Bethe's Equations at Roots of Unity. Journal of Statistical Physics 104, 573–587 (2001). https://doi.org/10.1023/A:1010372504158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010372504158

Navigation