Skip to main content
Log in

Membrane Transport Generated by the Osmotic and Hydrostatic Pressure. Correlation Relation for Parameters L p, σ, and ω

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Standard approach to membrane transport generated by osmotic andhydrostatic pressures, developed by Kedem and Katchalsky, is based onprinciples of thermodynamics of irreversible processes. In this paper wepropose an alternative technique. We derive transport equations from fewfairly natural assumptions and a mechanistic interpretation of the flows.In particular we postulate that a sieve-type membrane permeability isdetermined by the pore sizes and these are random within certain range.Assuming that an individual pore is either permeable or impermeable tosolute molecules, the membrane reflection coefficient depends on the ratioof permeable and impermeable pores. Considering flows through permeableand impermeable pores separately, we derive equations for the total volumeflux, solute flux and the solvent flux across the membrane. Comparing themechanistic equations to the Kedem-Katchalsky equations we find the formereasier to interpret physically. Based on the mechanistic equations we alsoderive a correlation relation for the membrane transport parameters L p,σ, and ω. This relation eliminates the need for experimentaldetermination of all three phenomenological parameters, which in somecases met with considerable difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katchalsky, A. and Curran, P.F.: Nonequilibrium thermodynamics in biophysics, Harvard Univ. Press, Cambridge, 1965.

    Google Scholar 

  2. Kedem, O. and Katchalsky, A.: Permeability of composite membranes (Part I–III), Trans. Faraday Soc. 59 (1963), 1918-1953.

    Google Scholar 

  3. Kedem, O. and Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta 27 (1958), 229-246.

    Google Scholar 

  4. Kedem, O. and Katchalsky, A.: A physical interpretation of the phenomenological coefficients of membrane permeability, J. Gen. Physiol. 45 (1961), 143-179.

    Google Scholar 

  5. Grygorczyk, Cz.: Measurement of practical phenomenological coefficients of membranes, Current Topics Biophys. 3 (1978), 5-19.

    Google Scholar 

  6. Zelman, A.: Membrane permeability. Generalization of the reflection coefficient method of describing volume and solute flows, Biophys. J. 12 (1972), 414-419.

    Google Scholar 

  7. Spiegler, K.S. and Kedem, O.: Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination 1 (1966), 311-326.

    Google Scholar 

  8. Yusuke Imai: Membrane transport system modeled by network thermodynamics, J. Membr. Sci. 41 (1989), 3-21.

    Google Scholar 

  9. Del Castillo, L.F. and Mason, E.A.: Generalization of membrane reflection coefficients for nonideal, nonisothermal, multicomponent systems with external forces and viscous flow, J. Membr. Sci. 28 (1986), 229-267.

    Google Scholar 

  10. Kargol, M.: A more general form of Kedem and Katchalsky's practical equations, J. Biol. Phys. 22 (1996), 15-26.

    Google Scholar 

  11. Kargol, M.: Full analytical description of graviosmotic volume flows, Gen. Physiol. Biophys. 13 (1994), 109-126.

    Google Scholar 

  12. Tomicki, B.: The role of pressure in osmotic flow, J. Colloid Interface Sci. 108 (1985), 484-494.

    Google Scholar 

  13. Kargol, M. and Ślęzak, A.: Modification of Kedem-Katchalsky practical equations, Technical Univ. Kielce, Zesz. Nauk. 16 (1985), 5-12 (in Polish).

    Google Scholar 

  14. Ślęzak, A. and Turczyński, B.: Modification of the Kedem-Katchalsky equations, Biophys. Chem. 24 (1986), 173-178.

    Google Scholar 

  15. Ślęzak, A. and Turczyński, B.: Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions, Biophys. Cehm. 44 (1992), 139-142.

    Google Scholar 

  16. Kargol, A.: Effect of boundary layers on reverse osmosis through a horizontal membrane, J. Membr. Sci. 159 (1999), 177-184.

    Google Scholar 

  17. Kargol, A.: Modified Kedem-Katchalsky equations and their applications, J. Membr. Sci. 174 (2000), 43-53.

    Google Scholar 

  18. Sidel, V.W. and Solomon, A.K.: Entrance of water into human red cells under an osmotic pressure gradient, J. Gen. Physiol. 41 (1957), 243-257.

    Google Scholar 

  19. Kargol, M.: Introduction to biophysics, Publ. WSP Kielce (in Polish), 1999.

  20. Steudle, E. and Brinckman, E.: The osmotic model of the root: water and solute relation of roots of Phaseolus coccineus, Botanica Acta 102 (1989), 85-95.

    Google Scholar 

  21. Kargol, A., Kargol, M. and Przestalski, S.: Correlation relation for the membrane transport parameters L p, σ, and ω, J. Biol. Phys. 23 (1997), 233-238.

    Google Scholar 

  22. Mason, E.A., Wendt, R.P. and Bresler, E.H.: Similarity relations (dimensional analysis) for membrane transport, J. Membr. Sci. 6 (1980), 283-298.

    Google Scholar 

  23. Meyer, R.A., Hills, E.C. and Friedman, M.H.: Tracer permeabilities underestimate transmembrane solute flux under a concentration gradient, J. Membr. Sci. 8 (1981), 247-253.

    Google Scholar 

  24. Wendt, R.P., Mason, E.A. and Bresler, E.H.: Effect of heteroporosity on membrane rejection coefficients, J. Membr. Sci. 8 (1981), 69-90.

    Google Scholar 

  25. Steudle, E., Oren, R. and Schultze, E.D.: Water transport in maize roots, Plant Physiol. 84 (1987), 1220-1232.

    Google Scholar 

  26. Ślęzak, A. and Turczyński, B.: The volume flow of electrolyte solutions across a horizontally mounted membrane, Biophys. Chem. 47 (1993), 139-141.

    Google Scholar 

  27. Ślęzak, A.: A model equation for the gravielectric effect in electrochemical cells, Biophys. Chem. 38 (1990), 189-199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargol, M., Kargol, A. Membrane Transport Generated by the Osmotic and Hydrostatic Pressure. Correlation Relation for Parameters L p, σ, and ω. Journal of Biological Physics 26, 307–320 (2000). https://doi.org/10.1023/A:1010347316061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010347316061

Navigation