Skip to main content
Log in

Olfaction in the Queensland Fruit Fly, Bactrocera tryoni. II: Response Spectra and Temporal Encoding Characteristics of the Carbon Dioxide Receptors

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactrocera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation, at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • BOGNER, F. 1990. Sensory physiological investigation of carbon dioxide receptors in Lepidoptera. J. Insect Physiol. 36:951-957.

    Google Scholar 

  • BOGNER, F. 1992. Response properties of CO2-sensitive receptors in tsetse flies (Diptera: Glossina palpalis). Physiol. Entomol. 17:19-24.

    Google Scholar 

  • BOGNER, F., BOPPRé, M., ERNST, K. D., and BOECKH, J. 1986. CO2 sensitive receptors on labial palps of Rhodogastria moths (Lepidoptera: Arctiidae): Physiology, fine structure and central projection. J. Comp. Physiol. A 158:741-749.

    Google Scholar 

  • DEN OTTER, C. J., and VAN DER GOES VAN NATERS, W. M. 1992. Single cell recordings from tsetse (Glossina m. morsitans) antennae reveal olfactory, mechano-and cold receptors. Physiol. Entomol. 17:33-42.

    Google Scholar 

  • DICKENS, J. C. 1984. Olfaction in the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae): electroantennogram studies. J. Chem. Ecol. 10:1759-1785.

    Google Scholar 

  • DICKENS, J. C., HART, W. G., LIGHT, D. M., and JANG, E. B. 1988. Tephritid olfaction: Morphology of the antennae of four tropical species of economic importance (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 81:325-331.

    Google Scholar 

  • EISEMANN, C. H., and RICE, M. J. 1992. Attractants for the gravid Queensland fruit fly Dacus tryoni. Entomol. Exp. Appl. 62:125-130.

    Google Scholar 

  • GIANNAKAKIS, A., and FLETCHER, B. S. 1985. Morphology and distribution of antennal sensilla of Dacus tryoni (Froggatt) (Diptera: Tephritidae). J. Aust. Entomol. Soc. 24:31-35.

    Google Scholar 

  • GRANT, A. J., WIGTON, B. E., AGHAJANIAN, J. G., and O'CONNELL, R. J. 1995. Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. J. Comp. Physiol. A 177:389-396.

    Google Scholar 

  • HEINBOCKEL, T., and KAISSLING, K.-E. 1996. Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and (±)-linalool. J. Insect Physiol. 42:565-578.

    Google Scholar 

  • HULL, C. D., and CRIBB, B. W. 1997. Ultrastructure of the antennal sensilla of Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Int. J. Insect Morphol. Embryol. 26:27-34.

    Google Scholar 

  • HULL, C. D., and CRIBB, B. W. 2001. Olfaction in the Queensland fruit fly, Bactrocera tryoni I. Identification of olfactory receptor neuron types responding to environmental odours. J. Chem. Ecol. 27:871-887.

    Google Scholar 

  • KAISSLING, K.-E. 1986. Temporal characteristics of pheromone receptor cell responses in relation to orientation behaviour of moths, pp. 193-199, in T. L. Payne, M.C. Birch and C. E. J. Kennedy (eds.). Mechanisms in Insect Olfaction. Clarendon Press, Oxford.

    Google Scholar 

  • KELLOGG, F. E. 1970. Water vapour and carbon dioxide receptors in Aedes aegypti (L.). J. Insect Physiol. 16:99-108.

    Google Scholar 

  • O'CONNELL, R. J. 1986. Electrophysiological responses to pheromone blends in single olfactory receptor neurones, pp. 217-224, in T. L. Payne, M. C. Birch, and C. E. J. Kennedy (eds.). Mechanisms in Insect Olfaction. Clarendon Press, Oxford.

    Google Scholar 

  • PAYNE, T. L., and DICKENS, J. C. 1976. Adaptation to determine receptor system specificity in insect olfactory communication. J. Insect Physiol. 22:1569-1572.

    Google Scholar 

  • RASCH, C., and REMBOLD, H. 1994. Carbon-dioxide-highly attractive signal for larvae of Helicoverpa armigera. Naturwissenshaften 81:228-229.

    Google Scholar 

  • RICE, M. J. 1989. The sensory physiology of pest fruit flies: conspectus and prospectus, pp. 249-272, in A. S. Robinson and G. H. S. Hooper (eds.). Fruit Flies-Their Biology, Natural Enemies and Control. World Crop Pests 3(A). Elsevier, Amsterdam.

    Google Scholar 

  • RUMBO, E. R., and KAISSLING, K.-E. 1989. Temporal resolution of odour pulses by three types of pheromone receptor cells in Antheraea polyphemus. J. Comp. Physiol. A 165:281-291.

    Google Scholar 

  • SCHNEIDER, D., KAFKA, W. A., BEROZA, M., and BIERL, B. A. 1977. Odor receptor responses of male gypsy and nun moth (Lepidoptera, Lymantriidae) to disparlure and its analogues. J. Comp. Physiol. A 113:1-15.

    Google Scholar 

  • STANGE, G. 1975. Linear relation between stimulus concentration and primary transduction process in insect CO2-receptors, pp. 207-211, in D. A. Denton and J. P. Coghlan (eds.). Olfaction and Taste V. Academic Press, New York.

    Google Scholar 

  • STANGE, G. 1992. High resolution measurement of atmospheric carbon dioxide concentration changes by the labial palp organ of the moth Heliothis armigera (Lepidoptera: Noctuidae). J. Comp. Physiol. A 171:317-324.

    Google Scholar 

  • STANGE, G. 1996. Sensory and behavioural responses of terrestrial invertebrates to biogenic carbon dioxide gradients, pp. 223-253, in G. Stanhill (ed.). Advances in Bioclimatology 4. Springer-Verlag, Berlin.

    Google Scholar 

  • STANGE, G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia 110:533-539.

    Google Scholar 

  • STANGE, G. 1999. Carbon dioxide is a close-range oviposition attractant in the Queensland fruit fly Bactrocera tryoni. Naturwissenschaften 86:190-192.

    Google Scholar 

  • STANGE, G., and KAISSLING, K.-E. 1995. The site of action of general anaesthetics in insect olfactory receptor neurons. Chem. Senses 20:421-432.

    Google Scholar 

  • STANGE, G., and WONG, C. 1993. Moth response to climate. Nature 365:699.

    Google Scholar 

  • STANGE, G., MONRO, J., STOWE, S., and OSMOND, C. B. 1995. The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta. Oecologia 102:341-352.

    Google Scholar 

  • SUTCLIFFE, J. F. 1994. Sensory bases of attractancy: morphology of mosquito olfactory sensilla-a review. J. Am. Mosq. Control Assoc. 10:309-315.

    Google Scholar 

  • YAMANA, K., TOH, Y., and TATEDA, H. 1986. Electrophysiological studies on the temporal organ of the Japanese house centipede, Thereuonema hilgendorfii. J. Exp. Biol. 126:297-314.

    Google Scholar 

  • ZACHARUK, R. Y. 1985. Antennae and sensilla, pp. 1-69, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Volume 6. Pergamon Press, London.

    Google Scholar 

  • ZIESMANN, J. 1996. The physiology of an olfactory sensillum of the termite Schedorhinotermes lamanianus: Carbon dioxide as a modulator of olfactory sensitivity. J. Comp. Physiol. A 179:123-133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hull, C.D., Cribb, B.W. Olfaction in the Queensland Fruit Fly, Bactrocera tryoni. II: Response Spectra and Temporal Encoding Characteristics of the Carbon Dioxide Receptors. J Chem Ecol 27, 889–906 (2001). https://doi.org/10.1023/A:1010326801480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010326801480

Navigation