Skip to main content
Log in

High-Temperature Oxidation Behavior of ODS–Fe3Al

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature oxidation behavior of an oxide dispersion-strengthened (ODS) Fe3Al alloy has been studied during isothermal and cyclic exposures in oxygen and air over the temperature range 1000 to 1300°C. Compared to commercially available ODS–FeCrAl alloys, it exhibited very similar short-term rates of oxidation at 1000 and 1100°C, but at higher temperatures the oxidation rate increased because of increased scale spallation. Over the entire temperature range, the oxide scale formed was α-Al2O3, with the morphological features typical of reactive-element doping and was similar to those formed on the ODS–FeCrAl alloys. Although initially this scale appeared to be extremely adherent to the Fe3Al substrate, an undulating metal–oxide interface formed with increasing time and temperature, which led to cracking of the scale in the vicinity of surface undulations accompanied by a loss of small fragments of the full-scale thickness. In some instances, the surface undulations appeared to have resulted from gross outward local extrusion of the alloy substrate. Similar features developd on the FeCrAl alloys, but they were typically much smaller after a given oxidation exposure. The ODS–Fe3Al alloy has a significantly larger coefficient of thermal expansion (CTE) than typical FeCrAl alloys (approximately 1.5 times at 900°C) and this appears to be the major reason for the greater tendency for scale spallation. The stress generated by the CTE mismatch was apparently sufficient to lead to buckling and limited loss of scale at temperatures up to 1100°C, with an increasing amount of substrate deformation at 1200°C and above. This deformation led to increased scale spallation by producing an out-of-plane stress distribution, resulting in cracking or shearing of the oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Brady, B. A. Pint, P. F. Tortorelli, I. G. Wright, and R. J. Hanrahan Jr., in Corrosion and Environmental Degradation of Material, M. Schütze, ed. (Volume 19 of the series Materials Science and Technology) (Wiley-VCH, Weinheim, Germany, 2000).

    Google Scholar 

  2. W. C. Hagel, Corrosion 21, 316 (1965).

    Google Scholar 

  3. P. Tomaszewicz and G. R. Wallwork, Rev. High-Temperature Mater. 4, 75 (1978).

    Google Scholar 

  4. R. Prescott and M. J. Graham, Oxid. Met. 38, 73 (1992).

  5. P. F. Tortorelli and J. H. DeVan, Mater. Sci. Eng. A153, 573 (1992).

    Google Scholar 

  6. P. F. Tortorelli and K. Natesan, Mater. Sci. Eng. A258, 115 (1998).

    Google Scholar 

  7. M. Sakiyama, P. Tomaszewicz, and G. R. Wallwork, Oxid. Met. 13, 311 (1979).

    Google Scholar 

  8. B. A. Pint, in Fundamental Aspects of High Temperature Corrosion, D. A. Shores, R. A. Rapp, and P. Y. Hou, eds. (The Electrochemical Society, Pennington, New Jersey, 1997), pp. 74–85.

    Google Scholar 

  9. D. Renusch et al., in Fundamental Aspects of High Temperature Corrosion, D. A. Shores, R. A. Rapp, and P. Y. Hou, eds. (The Electrochemical Society, Pennington, New Jersey, 1997), pp. 62–73.

    Google Scholar 

  10. J. H. DeVan, in Oxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (TMS, Warrensburg, Pennsylvania, 1988), pp. 107–115.

  11. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Werkst. Korros. 47, 663 (1996).

    Google Scholar 

  12. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Mat. High Temp. 16, 1 (1999).

    Google Scholar 

  13. I. G. Wright, B. A. Pint, P. F. Tortorelli, and C. G. McKamey, Proc. 10th Annu. Conf. on Fossil Energy Mater., Oak Ridge, Tennessee (ORNL Report No. ORNL/FMP-961/1, CONF-9605167, 1996), pp. 359–371.

  14. W. J. Quadakkers, K. Bongartz, F. Schubert, and H. Schuster, in Materials for Advanced Power Engineering 1994, D. Coutsouradis et al., eds. (Kluwer, New York, 1994), pp. 1533–1542.

    Google Scholar 

  15. M. J. Bennett, R. Perkins, J. B. Price, and F. Starr, in Materials for Advanced Power Engineering 1994, D. Coutsouradis et al., eds. (Kluwer, New York, 1994), pp. 1543–1562.

    Google Scholar 

  16. B. A. Pint, P. F. Tortorelli, and I. G. Wright, Oak Ridge National Laboratory Report, in preparation (2000).

  17. J. S. Benjamin, Metall. Trans. 1, 1 (1970).

    Google Scholar 

  18. J. H. DeVan, P. F. Tortorelli, and M. J. Bennett, Proc. 8th Annu. Conf. Fossil Energy Mater., Oak Ridge, Tennessee (CONF-9405143; ORNL/FMP-94/1, 1994), pp. 309–320.

  19. I. G. Wright, B. A. Pint, P. F. Tortorelli, and C. G. McKamey, Proc. 11th Annu. Conf. Fossil Energy Mater., Knoxville, Tennessee (ORNL Report No. ORNL/FMP-97/1, CONF-9705115, 1997), pp. 265–278.

  20. B. Pieraggi, Oxid. Met. 27, 177 (1987).

    Google Scholar 

  21. H. E. Evans, Mater. High Temp. 12, 219 (1994).

    Google Scholar 

  22. J. L. Smialek, Metall. Trans. 9A, 309 (1978).

    Google Scholar 

  23. J. D. Kuenzly and D. L. Douglass, Oxid. Met. 8, 139 (1974).

    Google Scholar 

  24. F. A. Golightly, F. H. Stott, and G. C. Wood, J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  25. A. G. Evans, M. Y. He, and J. W. Hutchinson, Acta Mater. 45, 3543 (1997).

    Google Scholar 

  26. W. D. Porter, and P. J. Maziasz, Scripta Metall. 29, 1043 (1993).

    Google Scholar 

  27. J. Fischer, J. J. deBarbadillo, and M. J. Shaw, in Structural Applications of Mechanical Alloying, F. H. Froes and J. J. deBarbadillo, eds. (ASM, Materials Park, Ohio, 1990), pp. 79–87.

    Google Scholar 

  28. Materials Data Sheet: ODS Superalloy PM2000, Metallwerk Plansee GmbH/Lechbruch, Feb. 1993.

  29. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermal Expansion– Nonmetallic Solids, Vol. 13: Thermophysical Properties of Matter (IFI/Plenum, New York, 1970).

    Google Scholar 

  30. B. A. Pint, A. J. Garratt-Reed, and L. Hobbs, Mater. High Temp. 13, 3 (1995).

    Google Scholar 

  31. F. S. Pettit, Trans. Amer. Instit. Mech. Eng. 239, 1297 (1967).

    Google Scholar 

  32. M. A. Janney, H. D. Kimrey, W. R. Allen, and J. O. Kiggans, J. Mater. Sci. 32, 1347 (1997).

    Google Scholar 

  33. R. L. Coble, J. Amer. Ceram. Soc. 41, 55 (1958).

    Google Scholar 

  34. A. E. Paladino and R. L. Coble, J. Amer. Ceram. Soc. 46, 133 (1963).

    Google Scholar 

  35. B. A. Pint and K. B. Alexander, J. Electrochem. Soc. 145, 1819 (1998).

    Google Scholar 

  36. B. A. Pint, P. F. Tortorelli, and I. G. Wright, in Cyclic Oxidation Testing of High-Temperature Materials, M. Schütze and W. J. Quadakkers, eds. (European Federation of Corrosion Publication 27, IOM Communications, London, 1999), pp. 111–132.

    Google Scholar 

  37. N. B. Pilling and R. E. Bedworth, Chem. Metall. Eng. 27, 72 (1922).

    Google Scholar 

  38. M. Schütze, in Protective Scales and Their Breakdown, D. R. Holmes, ed., translated by R. B. Waterhouse (The Institute of Corrosion and Wiley Series on Corrosion and Protection, Wiley, New York, 1997), Chap. 4.2.

    Google Scholar 

  39. J. A. Haynes, Oak Ridge National Laboratory, private communication (1999).

  40. M. Lance and B. A. Pint, Oak Ridge National Laboratory, unpublished work (1999).

  41. S. R. J. Saunders, M. E. Evans, M. Li, D. D. Gohil, and S. Osgerby, Oxid. Met. 48, 189 (1997).

    Google Scholar 

  42. B. A. Pint, Oxid. Met. 48, 303 (1997).

    Google Scholar 

  43. B. A. Pint, Oxid. Met. 49, 531 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, I.G., Pint, B.A. & Tortorelli, P.F. High-Temperature Oxidation Behavior of ODS–Fe3Al. Oxidation of Metals 55, 333–357 (2001). https://doi.org/10.1023/A:1010316428752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010316428752

Navigation