Skip to main content
Log in

Effect of Microstructure on the Internal Oxidation of Two-Phase Fe–Y Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

This work demonstrated the role of microstructure on the internal oxidation rate of two-phase alloys. Fe–Y alloys with Y contents between 1.5 and 15 wt% were employed as a model system. Alloys were prepared by arc-melting and the starting structures were as-solidified mixtures of Fe + Fe17Y2 intermetallic. An alloy with 1.5 wt% Y was cold-rolled to alter the intermetallic morphology. Oxidation was conducted in an Fe–FeO Rhines pack at 600, 700, and 800 °C up to 72 h. Pre- and post-oxidation microstructures were characterized with electron microscopy. Consistent with other studies, only the Fe17Y2 phase oxidized. Transmission electron microscopy showed the Fe17Y2 transformed into nanometer-scale oxides. Oxidation rates were always greater than those predicted by Wagner theory. Parabolic kinetics were obeyed until approximately 10 h. During this time the parabolic rate constants decreased with wt% Y. The effect of alloy microstructure on oxidation kinetics was attributed to connectivity of the Fe17Y2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. P. Brady, B. Gleeson and I. G. Wright, JOM 52, 16 (2000).

    Article  Google Scholar 

  2. D. L. Douglass, Oxidation of Metals 44, 81 (1995).

    Article  Google Scholar 

  3. G. Wang, B. Gleeson and D. L. Douglass, Oxidation of Metals 35, 333 (1991).

    Article  Google Scholar 

  4. F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).

    Article  Google Scholar 

  5. F. Gesmundo, Y. Niu and F. Viani, Oxidation of Metals 43, 379 (1995).

    Article  Google Scholar 

  6. Y. Niu, R. Y. Yan, G. Y. Fu, W. T. Wu and F. Gesmundo, Oxidation of Metals 49, 91 (1998).

    Article  Google Scholar 

  7. F. Gesmundo, Y. Niu, D. Oquab, C. Roos, B. Pieraggi and F. Viani, Oxidation of Metals 49, 115 (1998).

    Article  Google Scholar 

  8. B. Kloss, M. Wenderoth and U. Glatzel, Oxidation of Metals 61, 239 (2004).

    Article  Google Scholar 

  9. F. Gesmundo, Y. Niu, F. Viani and F. C. Rizzo, Oxidation of Metals 46, 441 (1996).

    Article  Google Scholar 

  10. C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).

    Google Scholar 

  11. R. A. Rapp, Corrosion 21, 382 (1965).

    Article  Google Scholar 

  12. S. Guruswamy, S. M. Park, J. P. Hirth and R. A. Rapp, Oxidation of Metals 26, 77 (1986).

    Article  Google Scholar 

  13. B. W. Zhang, G. Liu and K. Han, Journal of Phase Equilibria 13, 304 (1992).

    Article  Google Scholar 

  14. G. R. Odette, JOM 66, 2427 (2014).

    Article  Google Scholar 

  15. F. Gesmundo, F. Viani and Y. Niu, Oxidation of Metals 45, 51 (1996).

    Article  Google Scholar 

  16. J. H. Schneibel and S. Shim, Materials Science and Engineering A 488, 134 (2008).

    Article  Google Scholar 

  17. F. N. Rhines, Transactions AIME 137, 246 (1940).

    Google Scholar 

  18. D. Gaskell, Introduction to the Thermodynamics of Materials, vol. 389, 5th ed, (CRC Press, Boca Raton, 2008).

    Google Scholar 

  19. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 671 (2012).

    Article  Google Scholar 

  20. M. M. Makhlouf and H. V. Guthy, Journal of Light Metals 1, 199 (2002).

    Article  Google Scholar 

  21. S. D. McDonald, K. Nogita and A. K. Dahle, Acta Materialia 52, 4273 (2004).

    Article  Google Scholar 

  22. J. Takada, S. Yamamoto, S. Kikuchi and M. Adachi, Oxidation of Metals 25, 93 (1986).

    Article  Google Scholar 

  23. D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott and B. D. Bastow, Philosophical Magazine A 46, 931 (1982).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge that funding for this work has been provided by the Wilton E. Scott Institute for Energy Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Kachur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachur, S.J., Webler, B.A. Effect of Microstructure on the Internal Oxidation of Two-Phase Fe–Y Alloys. Oxid Met 85, 343–355 (2016). https://doi.org/10.1007/s11085-015-9598-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9598-4

Keywords

Navigation