Skip to main content
Log in

A Statistical Mechanics Model for Receptor Clustering

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We introduce and study a simple lattice statistical mechanics modelfor the clustering of tumor necrosis factor receptor I (TNFR1).Our model explains clustering under over-expression of the cytoplasmicsignal transducer as well as the clustering induced via extracellularligand binding; also we explain why the loss of transducer leads to arapid break-up of the clusters. The basic mechanism at work is a first-order(cooperative) phase transition caused by the multimeric binding capability ofthe receptor-transducer complex. Using cooperativity of this type, the cellsare found to have an enhanced sensitivity and robustness. In general, ourmethod can be applied to other receptor-clustering related signaling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heldin, C.H.: 1995. Dimerization of cell surface receptors in signal transduction, Cell. 80 (1955), 213-223. Stuart, D.I. and Jones, E.Y.: Recognition at the cell surface: recent structural insights, Curr. Opin. Struct. Biol. 5 (1995), 735–743.

    Google Scholar 

  2. Ashkenazi, A. and Dixit, V.M.: Death receptors: signaling and modulation, Science 281 (1998), 1305-1308.

    Google Scholar 

  3. Park, A. and Baichwal, V.R.: Systematic mutational analysis of the death domain of the tumor necrosis factor receptor 1-associated protein TRADD, J. Biol. Chem. 271 (1996), 9858-9862.

    Google Scholar 

  4. Boldin, M.P., Mett, I.L., Varfolomeev, E.E., Chumakov, I., Shemer-Avni, Y., Camonis, J.H. and Wallach, D.: Self-association of the ‘death domains’ of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects, J. Biol. Chem. 270 (1995), 387-391. Vandevoorde, V., Haegeman, G. and Fiers, W.: Induced expression of trimerized intracellular domains of the human tumor necrosis factor (TNF) p55 receptor elicits TNF effects, J. Cell Biol. 137 (1997), 16227–16238.

    Google Scholar 

  5. Jiang, Y., Woronicz, J.D., Liu, W. and Goeddel, D.V.: Prevention of constitutive TNF receptor 1 signaling by silencer of death domains, Science 283 (1999), 543-546.

    Google Scholar 

  6. Grell, M., Wajant, H., Zimmermann, G. and Scheurich, P.: The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor, Proc. Natl. Acad. Sci. USA. 95 (1998), 570-575.

    Google Scholar 

  7. Guo, C. and Levine, H.: A thermodynamic model for receptor clustering, Biophys. J. 77 (1999), 2358-2365.

    Google Scholar 

  8. Amit, D.J.: World Scientific, River edge, New Jersey, 1993.

    Google Scholar 

  9. Barkai, N. and Leibler, S.: Robustness in simple biochemical networks, Nature 387 (1997), 913-917.

    Google Scholar 

  10. Rosette, C. and Karin, M.: Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors, Science 274 (1996), 1194-1197.

    Google Scholar 

  11. Mosselmans, R., Hepburn, A., Dumont, J.E., Fiers, W. and Galand, P.: Endocytic pathway of recombinant murine tumor necrosis factor in L-929 cells, J. Immunol. 141 (1988), 3096-3100.

    Google Scholar 

  12. Garraway III, K.L., Koland, J.G. and Cerione, R.A.: Visualization of epidermal growth factor (EGF) receptor aggregation in plasma membrane by fluorescence resonance energy transfer, J. Biol. Chem. 264 (1989), 8699-8707. Gadella, T.W.J. and Jovin, T.M.: Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy, J. Cell Biol. 129 (1995), 1543–1558. Guo, C., Dower, S.K., Holowka, D. and Baird, B.: Fluorescence resonance energy transfer reveals Interleukin (IL)-1 dependent aggregation of IL-1 type I receptors that correlates with receptor activation, J. Biol. Chem. 270 (1995), 27562–27568.

    Google Scholar 

  13. Simm, A., Hoppe, V., Karbach, D., Leicht, M., Fenn, A. and Hoppe, J.: Late signals from PDGF receptors leading to the activation of p70S6 kinase are necessary for the transition from G1 to S phase in AKR-2B cells, Exp. Cell Res. 244 (1998), 379-393. Wofsy, C., Kent, U.M., Mao, S., Metzger, H. and Goldstein, B.: Kinetics of tyrosine phosphorylation when IgE dimers bind to FC∈ receptors on rat basophilic leukemia cells, J. Biol. Chem. 270 (1995), 20264–20272.

    Google Scholar 

  14. Hirth, J.P. and Pound, G.M.: Condensation and Evaporation. Nucleation and Growth Kinetics, Pro.Matr. Sci. II, MacMillan. New York, 1963. Zettlemoyer, A.C.: Nucleation,Marcel Dekker, New York, 1969. Abraham, F.F.: Homogeneous Nucleation Theory, Ad. Theo. Chem. Sup. I, Academic Press, New York, 1974. Langer, J.S.: Ann. Phys. 41 (1967), 108–157; Phys. Rev. Lett. 21 (1968), 973–976; Ann. Phys. 54 (1969), 258–275.

    Google Scholar 

  15. Berg, H.C. and Purcell, E.M.: Physics of chemoreception, Biophys. J. 20 (1977), 193-219. Haugh, J.M. and Lauffenburger, D.A.: Physical modulation of intracellular signaling processes by locational regulation, Biophys. J. 72 (1997), 2014–2031.

    Google Scholar 

  16. Park, Y.C., Burkitt, V., Villa, A.R., Tong, L. and Wu, H.: Structural basis for self-association and receptor recognition of human TRAF2, Nature 398 (1999), 533-538.

    Google Scholar 

  17. Xiao, Z., Zhang, N., Murphy, D.B. and Devreotes, P.N.: Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation, J. Cell Biol. 139 (1997), 365-374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, C., Levine, H. A Statistical Mechanics Model for Receptor Clustering. Journal of Biological Physics 26, 219–234 (2000). https://doi.org/10.1023/A:1010313529687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010313529687

Navigation