Skip to main content
Log in

A model of cell surface receptor aggregation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we construct and analyze a model of cell receptor aggregation. Experiments have shown that receptors in an aggregated state have greatly reduced mobility. We model the effects of this reduced mobility with a density dependent diffusion and study the impact of density dependent diffusion on aggregate formation in a one-dimensional domain. Critical values of receptor diffusivity and receptor activation are found and compared with numerical simulations. We find that the role of density dependant diffusion is quite limited in the formation of aggregate structures. In the case of receptor activation, the analytical results agree very well with the numerical calculations. Finally, we consider our model in higher dimensional domains. In this case our analysis is primarily numerical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27(6):1085–1095

    Article  Google Scholar 

  • Bray D, Levin MD, Morton-Firth CJ (1998) Receptor clustering as a cellular mechanism to control sensitivity. Nature 393(6680):85–88

    Article  Google Scholar 

  • Bray D, Duke T (2004) Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu Rev Biophys Biomol Struct 33:53–73

    Article  Google Scholar 

  • Caré BR, Soula HA (2011) Impact of receptor clustering on ligand binding. BMC Syst Biol 5(1):48

    Article  Google Scholar 

  • Chan C, George AJT, Stark J (2001) Cooperative enhancement of specificity in a lattice of t cell receptors. Proc Nat Acad Sci 98(10):5758–5763

    Article  Google Scholar 

  • Changeux J-P, Thiéry J, Tung Y, Kittel C (1967) On the cooperativity of biological membranes. Proc Natl Acad Sci USA 57(2):335

    Article  Google Scholar 

  • Duke T, Bray D (1999) Heightened sensitivity of a lattice of membrane receptors. Proc Nat Acad Sci 96(18):10104–10108

    Article  Google Scholar 

  • Duke T, Graham I (2009) Equilibrium mechanisms of receptor clustering. Prog Biophys Mol Biol 100(1):18–24

    Article  Google Scholar 

  • Heldin C-H (1995) Dimerization of cell surface receptors in signal transduction. Cell 80(2):213–223

    Article  Google Scholar 

  • Holowka D, Baird B (1996) Antigen-mediated ige receptor aggregation and signaling: a window on cell surface structure and dynamics. Ann Rev Biophys Biomol Struct 25(1):79–112

    Article  Google Scholar 

  • Jilkine A, Angenent SB, Wu LF, Altschuler SJ (2011) A density-dependent switch drives stochastic clustering and polarization of signaling molecules. PLoS Comput Biol 7(11):e1002271

    Article  Google Scholar 

  • Kent Ute M, Mao S-Y, Wofsy C, Goldstein B, Ross S, Metzger H (1994) Dynamics of signal transduction after aggregation of cell-surface receptors: studies on the type i receptor for ige. Proc Nat Acad Sci 91(8):3087–3091

    Article  Google Scholar 

  • Kolokolnikov T, Erneux T, Wei J (2006) Mesa-type patterns in the one-dimensional brusselator and their stability. Phys D 214(1):63–77

    Article  MathSciNet  MATH  Google Scholar 

  • Kolokolnikov T, Tlidi M (2007) Spot deformation and replication in the two-dimensional belousov–zhabotinski reaction in a water-in-oil microemulsion. Phys Rev Lett 98(18):188303

    Article  Google Scholar 

  • Levy C (2015) Modelling the spatial effects of the signal transduction process. PhD thesis, Dalhousie University

  • Macken CA, Perelson AS (1982) Aggregation of cell surface receptors by multivalent ligands. J Math Biol 14(3):365–370

    Article  MathSciNet  MATH  Google Scholar 

  • Maplesoft A division of Waterloo Maple Inc., Waterloo, Ontario. Maple 16

  • McCloskey MA, Poo M (1986) Contact-induced redistribution of specific membrane components: local accumulation and development of adhesion. J Cell Biol 102(6):2185–2196

    Article  Google Scholar 

  • McKay R, Kolokolnikov T (2012) Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discret Contin Dyn Syst B 17(1):191–220

    MathSciNet  MATH  Google Scholar 

  • Muir P, Pew J (2013) Bacoli95. Fortran95 code

  • Nishiura Y, Fujii H (1987) Stability of singularly perturbed solutions to systems of reaction-diffusion equations. SIAM J Math Anal 18(6):1726–1770

    Article  MathSciNet  MATH  Google Scholar 

  • PDE FlexPDE. Solutions inc. http://www.pdesolutions.com

  • Sulzer B, Perelson AS (1996) Equilibrium binding of multivalent ligands to cells: effects of cell and receptor density. Math Biosci 135(2):147–185

    Article  MATH  Google Scholar 

  • Thomas JL, Holowka D, Baird B, Webb WW (1994) Large-scale co-aggregation of fluorescent lipid probes with cell surface proteins. J Cell Biol 125(4):795–802

    Article  Google Scholar 

  • Wanant S, Quon MJ (2000) Insulin receptor binding kinetics: modeling and simulation studies. J Theor Biol 205(3):355–364

    Article  Google Scholar 

  • Wei J, Winter M (2009) Spikes for the Gierer–Meinhardt system with discontinuous diffusion coefficients. J Nonlinear Sci 19(3):301–339

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Iron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iron, D., Rumsey, J. A model of cell surface receptor aggregation. J. Math. Biol. 75, 705–731 (2017). https://doi.org/10.1007/s00285-017-1094-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-017-1094-9

Keywords

Mathematics Subject Classification

Navigation