Skip to main content
Log in

The Discrete Coagulation Equations with Collisional Breakage

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The discrete coagulation equations with collisional breakage describe the dynamics of cluster growth when clusters undergo binary collisions resulting either in coalescence or breakup with possible transfer of matter. Each of these two events may happen with an a priori prescribed probability depending for instance on the sizes of the colliding clusters. We study the existence, density conservation and uniqueness of solutions. We also consider the large time behaviour and discuss the possibility of the occurrence of gelation in some particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Aldous, Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists, Bernoulli 5:3–48 (1999).

    Google Scholar 

  2. J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Statist. Phys. 61:203–234(1990).

    Google Scholar 

  3. J. M. Ball, J. Carr, and O. Penrose, The Becker–Döring cluster equations: Basic properties and asymptotic behaviour of solutions, Comm. Math. Phys. 104:657–692 (1986).

    Google Scholar 

  4. J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case, Proc. Roy. Soc. Edinburgh Sect. A 121:231–244 (1992).

    Google Scholar 

  5. J. Carr and F. P. da Costa, Asymptotic behavior of solutions to the coagulation-fragmentation equations. II. Weak fragmentation, J. Statist. Phys. 77:89–123 (1994).

    Google Scholar 

  6. F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation, J. Math. Anal. Appl. 192:892–914 (1995).

    Google Scholar 

  7. F. P. da Costa, Convergence to equilibria of solutions to the coagulation-fragmentation equations, in Nonlinear Evolution Equations and Their Applications (Macau, 1998), pp. 45–56 (World Sci. Publishing, River Edge, NJ, 1999).

    Google Scholar 

  8. Z. Cheng and S. Redner, Scaling theory of fragmentation, Phys. Rev. Lett. 60:2450–2453 (1988).

    Google Scholar 

  9. Z. Cheng and S. Redner, Kinetics of fragmentation, J. Phys. A 23:1233–1258 (1990).

    Google Scholar 

  10. C. Dellacherie and P. A. Meyer, Probabilités et potentiel, Chapitres I–IV (Hermann, Paris, 1975).

    Google Scholar 

  11. R. L. Drake, A general mathematical survey of the coagulation equation, in Topics in Current Aerosol Research (part 2), International Reviews in Aerosol Physics and Chemistry (Pergamon Press, Oxford, 1972), pp. 203–376.

    Google Scholar 

  12. I. Jeon, Existence of gelling solutions for coagulation-fragmentation equations, Comm. Math. Phys. 194:541–567 (1998).

    Google Scholar 

  13. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Prentice-Hall, Englewood Cliffs, 1970).

    Google Scholar 

  14. M. Kostoglou and A. J. Karabelas, A study of the nonlinear breakage equation: Analytical and asymptotic solutions, J. Phys. A 33:1221–1232 (2000).

    Google Scholar 

  15. Ph. Laurençot, Global solutions to the discrete coagulation equations, Mathematika, to appear.

  16. Ph. Laurençot, The discrete coagulation equations with multiple fragmentation, Proc. Edinburgh Math. Soc. (2), to appear.

  17. Ph. Laurençot and D. Wrzosek, Time asymptotics for a Becker–Döring-type model of aggregation with nonlinear breakage, in preparation.

  18. Ph. Laurençot and D. Wrzosek, in preparation.

  19. Lê Châu-Hoân, Etude de la classe des opérateurs m-accrétifs de L 1) et accrétifs dans L∞(Ω), Thèse de 3 ème cycle, Université de Paris VI, 1977.

  20. V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Israel Program for Scientific Translations Ltd., Jerusalem, 1972).

    Google Scholar 

  21. M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik. Zeitschr. 17:557–599 (1916).

    Google Scholar 

  22. M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift f. physik. Chemie 92:129–168 (1917).

    Google Scholar 

  23. J. L. Spouge, An existence theorem for the discrete coagulation-fragmentation equations, Math. Proc. Cambridge Philos. Soc. 96:351–357 (1984).

    Google Scholar 

  24. R. C. Srivastava, A simple model of particle coalescence and breakup, J. Atmos. Sci. 39:1317–1322 (1982).

    Google Scholar 

  25. W. H. Stockmayer, Theory of molecular size distribution and gel formation in branchedchain polymers, J. Chem. Phys. 11:45–55 (1943).

    Google Scholar 

  26. D. Wilkins, A geometrical interpretation of the coagulation equation, J. Phys. A 15:1175–1178 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurençot, P., Wrzosek, D. The Discrete Coagulation Equations with Collisional Breakage. Journal of Statistical Physics 104, 193–220 (2001). https://doi.org/10.1023/A:1010309727754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010309727754

Navigation