Skip to main content
Log in

Significance of Non-isothermal Kinetic Data. A statistical study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Arrhenius parameters values, in non-isothermal kinetic vaporisation processes for a series of compounds with related structures, have been calculated. This was made using a method of calculation that allows to find the most probable vaporisation mechanisms.

According to this method DTG curves were compared with some theoretical ones reported in literature, whose shape results to be only a function of the mechanisms. In this way the choice of the mathematical functions which can be inserted in the kinetic equations, was influenced by the shape of the DTG plots and other thermal analysis signals thus allowing to choose the most probable mechanisms.

The kinetic parameters derived from these mechanisms were compared, using statistical analysis, with those obtained from another method of calculation based on ‘a priori’ vaporisation mechanism chosen for the investigated liquid–gas transition.

The standard deviations of the slope and of the intercept, together with the standard deviation and the square correlation coefficient (r 2) of the linear regression equations related to the mechanisms of the two methods were calculated. Student t-test, Fisher F-test, confidence intervals (c.i.) and residuals valueswere also given.

Statistical analysis shows that the mechanisms obtained with the former method (diffusive and geometrical models) and the related Arrhenius parameters result to be more significant (in terms of probability) than the corresponding quantities of the latter for which a first-order model was chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zsakó, J. Thermal Anal., 34 (1988) 1489.

    Article  Google Scholar 

  2. J. Zsakó, J. Thermal Anal., 47 (1996) 1679.

    Article  Google Scholar 

  3. J. Zsakó, J. Thermal Anal., 54 (1998) 921.

    Article  Google Scholar 

  4. J. Zsakó, Cs. V·rhelyi and G. Liptay, Thermochim. Acta, 203 (1992) 297.

    Article  Google Scholar 

  5. A. K. Galway and M. E. Brown, Thermochim. Acta, 300 (1997) 107.

    Article  Google Scholar 

  6. A. K. Galway and M. E. Brown, Proc. R. Soc. London, A450 (1995) 501.

    Google Scholar 

  7. S. Clementi, F. Fringuelli, P. Linda and S. Savelli, Gazz. Chim. Ital., 105 (1975) 291.

    Google Scholar 

  8. W. H. Davis Jr. and W. H. Pryor, J. Chem. Educ., 53 (1976) 285.

    Article  CAS  Google Scholar 

  9. S. Clementi, F. Fringuelli and S. Savelli, Chim. Ind. (Milan), 60 (1978) 598.

    CAS  Google Scholar 

  10. E. Tiley, Chem. Br., 21 (1985) 162.

    CAS  Google Scholar 

  11. O. Exner, Collect. Czech. Chem. Commun., 31 (1968) 3223.

    Google Scholar 

  12. J. Shorter, Correlation Analysis of Organic Reactivity, Wiley, New York, 1984.

    Google Scholar 

  13. F. Rodante, G. Catalani and M. Guidotti, J. Thermal Anal., 53 (1998) 937.

    Article  CAS  Google Scholar 

  14. J. McCarty and M. Green, Instruction Manual for the Stanton Redcroft Simultaneous TG-DSC, January 1989.

  15. M. J. Sanchez-Martin and M. Sanchez-Camazano, Thermochim. Acta, 126 (1988) 319.

    Article  CAS  Google Scholar 

  16. D. Dollimore, Thermochim. Acta, 203 (1992) 7.

    Article  CAS  Google Scholar 

  17. D. Dollimore, T. A. Evans, Y. F. Lee, G. P. Pee and F. W. Wilburn, Thermochim. Acta, 196 (1992) 255.

    Article  CAS  Google Scholar 

  18. D. Dollimore, T. A. Evans, Y. F. Lee and F. W. Wilburn, Thermochim. Acta, 198 (1992) 249.

    Article  CAS  Google Scholar 

  19. X. Gao, D. Chen and D. Dollimore, Thermochim. Acta, 223 (1993) 333.

    Article  Google Scholar 

  20. V. Satava, Thermochim. Acta, 21 (1971) 423.

    Article  Google Scholar 

  21. C. B. Doyle, J. Appl. Polym. Sci., 6 (1962) 639.

    Article  CAS  Google Scholar 

  22. O. Vitali, Tavole Statistiche, Cacucci Editore, Bari 1994, p. 62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodante, F., Vecchio, S. Significance of Non-isothermal Kinetic Data. A statistical study. Journal of Thermal Analysis and Calorimetry 63, 433–455 (2000). https://doi.org/10.1023/A:1010196526966

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010196526966

Navigation