Skip to main content
Log in

The Effects of γ-Irradiation on the Electrokinetic and Thermal Behaviour of Zirconium Hydroxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Zirconium hydroxide particles produced by rapid precipitation at pH 10.4, 7 or 2 were subjected toγ-irradiation up to a final dose of 20 MGy. The effects of the γ-irradiation were examined by X-ray powder diffraction, laser Raman spectroscopy, differential scanning calorimetry and microelectrophoretic measurements. It was found that γ-irradiation had no influence on the behaviour of zirconium hydroxide during calcination and subsequent cooling. The results of microelectrophoretic measurements showed that γ-irradiation influences the surface properties of zirconium hydroxide as a function of the precipitation pH. Zirconium hydroxide precipitated at pH 2 proved to be the most susceptible to γ-irradiation, while the sameγ-irradiation had very little (if any) effect on the surface properties of zirconium hydroxide precipitated at pH 10.5. After γ-irradiation, the electrophoretic mobility of zirconium hydroxide precipitated at pH 2 was increased at both low and high pH, thereby indicating an increase in its adsorption capacity. The analogy observed between the pH-dependence of the effects of γ-irradiation on the electrokinetic behaviour of zirconium hydroxide and the influence of ball-milling on the thermal behaviour of zirconium hydroxide [8] suggested that the susceptibility of amorphous zirconium hydroxide increases with decrease of the precipitation pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Stevens, Zirconia and Zirconia Ceramics, Magnesium Electron Publication No. 113, Published by Magnesium Electron Ltd., July 1986, Twickenham, U.K.

    Google Scholar 

  2. T. Yamaguchi and J. W. Hightower, J. Am. Chem. Soc., 99 (1977) 4201.

    Article  CAS  Google Scholar 

  3. Y. Nakano, T. Izuka, H. Hattori and K. Tanabe, J. Catal., 57 (1979) 1.

    Article  CAS  Google Scholar 

  4. M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, A. Porras and F. J. Urbano, J. Chem. Soc. Faraday Trans., 93 (1997) 1431.

    Article  CAS  Google Scholar 

  5. B. H. Davis, J. Am. Ceram. Soc., 67 (1984) C-168.

    Google Scholar 

  6. R. Srinivasan, M. B. Harris, S. F. Simpson, R. J. DeAngelis and B. H. Davis, J. Mater. Res., 3 (1988) 787.

    CAS  Google Scholar 

  7. R. Srinivasan and B. H. Davis, Catal. Lett., 14 (1992) 165.

    Article  CAS  Google Scholar 

  8. G. Štefanić, S. Musić and A. Sekulić, Thermochim. Acta, 273 (1996) 119.

    Article  Google Scholar 

  9. G. Štefanić, S. Musić, S. Popović and A. Sekulić, J. Molec. Struct., 408/409 (1997) 391.

    Article  Google Scholar 

  10. K. Tanabe, Mater. Chem. Phys., 13 (1985) 347.

    Article  CAS  Google Scholar 

  11. R. Srinivasan, T. R. Watkins, C. R. Hubbard and B. H. Davis, Chem. Mater., 7 (1995) 725.

    Article  CAS  Google Scholar 

  12. R. Srinivasan, R. A. Keogh, D. R. Milburn and B. H. Davis, J. Catal., 153 (1995) 123.

    Article  CAS  Google Scholar 

  13. G. Štefanić, S. Musić and S. Popović, Thermochim. Acta, 259 (1995) 225.

    Article  Google Scholar 

  14. G. Štefanić, S. Popović and S. Musić, Thermochim. Acta, 303 (1997) 31.

    Article  Google Scholar 

  15. IUPAC Commission on Colloid and Surface Chemistry Including Catalysis, J. Pure Appl. Chem., 63 (1991) 895.

    Google Scholar 

  16. M. Schultz, St. Grimm and W. Burckhardt, Solid State Ion., 63–65 (1993) 18.

    Article  Google Scholar 

  17. J. W. T. Spinks and R. J. Woods, An Introduction to Radiation Chemistry (3rd ed.), Wiley, 1990.

  18. W. H. Cropper, Science, 137 (1962) 955.

    CAS  Google Scholar 

  19. A. A. Davranov, S. I. Kuzina, M. R. Muidinov and I. M. Barkalov, Khim. Vys. Energ., 24 (1990) 326.

    CAS  Google Scholar 

  20. D. D. Eley and M. A. Zammitt, J. Catal., 21 (1971) 366.

    Article  CAS  Google Scholar 

  21. T. K. Kang, I. H. Kuk, Y. Katano, N. Igawa and H. Ohno, J. Nucl. Mater., 209 (1994) 321.

    Article  CAS  Google Scholar 

  22. A. Baufeld, D. Baither, U. Messerschmidt, M. Bartsch and I. Merkl, J. Am. Ceram. Soc., 76 (1993) 3163.

    Article  CAS  Google Scholar 

  23. S. W. Wang, J. K. Guo, X. X. Huang and B. S. Li, Mater. Lett., 25 (1995) 151.

    Article  CAS  Google Scholar 

  24. S. V. Phadnis and M. K. Asundi, Indian J. Eng. Mater. Sci., 2 (1995) 172.

    CAS  Google Scholar 

  25. R. J. Hunter, Zeta Potential in Colloid Science, Academic Press London, 1981.

    Google Scholar 

  26. D. R. Clarke and F. Adar, J. Am. Ceram. Soc., 65 (1982) 284.

    Article  CAS  Google Scholar 

  27. E. Henly and E. Johnson, The Chemistry and Physics of High Energy Reactions (Russian Translation), Moscow Atomizdat, 1974.

  28. A. I. Swallow, Radiation Chemistry, An Introduction (Russian Translation), Moscow Atomizdat, 1976.

  29. V. V. Orlov, T. P. Vasina, V. I. Ermakov and P. A. Zagorec, Khim. Vys. Energ., 9 (1975) 379.

    Google Scholar 

  30. K. C. Ray and S. Khan, Ind. J. Chem., 13 (1975) 577.

    CAS  Google Scholar 

  31. M. A. Blesa, A. J. G. Maroto, S. I. Passaggio, N. E. Figliolia and G. Rigotti, J. Mater Sci., 20 (1985) 4601.

    Article  CAS  Google Scholar 

  32. G. A. Parks, Chem. Rev., 65 (1965) 177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musić, S., Štefanić, G., Vdović, N. et al. The Effects of γ-Irradiation on the Electrokinetic and Thermal Behaviour of Zirconium Hydroxide. Journal of Thermal Analysis and Calorimetry 59, 837–846 (2000). https://doi.org/10.1023/A:1010166123511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010166123511

Navigation