Skip to main content
Log in

Measuring the Glass Transition of Thermosets by Alternating Differential Scanning Calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The glass transition temperature of thermosets is determined by alternating differential scanning calorimetry (ADSC), which is a temperature modulated DSC technique. The different values of the glass transition obtained from heat flow measurements (total and reversible) and heat capacity (modulus of the complex heat capacity) are analysed and compared with the values obtained by conventional DSC. The effect of the sample mass on the values of Tg, heat capacity and phase angle has been analysed. The effect of the thermal contact between sample and pan has been studied using samples cured directly inside the pan and disc-shaped samples of different thickness. The results obtained for the thermal properties and the phase angle are compared and analysed. The modulus of the complex heat capacity enables the determination of the dynamic glass transition, T, which is frequency dependent. The apparent activation energy ofthe relaxation process associated with the glass transition has been evaluated from the dependence of T on the period of the modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Turi ed., Thermal Characterization of Polymeric Materials, Academic Press, San Diego 1997, Vol. 1, Chap. 3.

    Google Scholar 

  2. V. B. F. Mathot Ed, Calorimetry and Thermal Analysis of Polymers, Hanser Publ. Munich 1994, Chap. 6.

    Google Scholar 

  3. G. W. H. Höhne, W. Hemminger and H. J. Flammersheim, Differential Scanning Calorimetry. An Introduction for Practitioners, Springer, Berlin 1996, Chap. 6.

    Google Scholar 

  4. M. Reading, Trends Polym. Sci., 1 (1993) 248.

    Google Scholar 

  5. M. Reading, D. Elliot and V.L. Hill, Proceedings of 21st NATHAS (1992) 145; J. Thermal Anal., 40 (1993) 949.

  6. S. Gill, S.R. Sauerbrunn and M. Reading, J. Thermal Anal., 40 (1993) 931.

    Google Scholar 

  7. Special Issue on Temperature Modulated Calorimetry, C. Schick and G. W. H. Höhne eds., Thermochim. Acta, 304/305 (1997)

  8. A. Boller, C. Schick and B. Wunderlich, Thermochim. Acta, 266 (1995) 97.

    Google Scholar 

  9. J. M. Hutchinson and S. Montserrat, Thermochim. Acta, 304/305 (1997) 257.

    Google Scholar 

  10. J. E. K. Schawe, Thermochim. Acta, 261 (1995) 183.

    Google Scholar 

  11. B. Wunderlich, Y. Jin and A. Boller, Thermochim. Acta, 238 (1994) 277.

    Google Scholar 

  12. J. E. K. Schawe, Thermochim. Acta, 260 (1995) 1.

    Google Scholar 

  13. J. M. Hutchinson, Mettler Toledo USER COM no. 6 (1997) 22.

    Google Scholar 

  14. J. M. Hutchinson, A. B. Tong and Z. Jiang, Thermochim. Acta, 335 (1999) 27.

    Google Scholar 

  15. B. Wunderlich and I. Okazaki, J. Thermal Anal., 49 (1997) 57.

    Google Scholar 

  16. J.M. Hutchinson and S. Montserrat, J. Thermal Anal., 47 (1996) 103.

    Google Scholar 

  17. J. M. Hutchinson and S. Montserrat, Thermochim. Acta, 286 (1996) 263.

    Google Scholar 

  18. J. E. K. Schawe, Thermochim. Acta, 304/305 (1997) 111.

    Google Scholar 

  19. S. Montserrat and I. Cima, Thermochim. Acta, 330 (1999) 189.

    Google Scholar 

  20. S. Montserrat, Proceedings of 4th Mediterranean Conference on Calorimetry and Thermal Analysis, Patras (Greece) 1999.

  21. B. Wunderlich, J. Thermal Anal., 42 (1994) 307.

    Google Scholar 

  22. S. Weyer, A. Hensel and C. Schick, Thermochim. Acta, 304/305 (1997) 267.

    Google Scholar 

  23. Z. Jiang, C. T. Imrie and J. M. Hutchinson, Thermochim. Acta, 315 (1998) 1.

    Google Scholar 

  24. A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson and A. R. Ramos, J. Polym. Sci., Polym. Phys. Ed., 17 (1979) 1097.

    Google Scholar 

  25. C. T. Moynihan, A. J. Easteal, M. A. DeBolt and J. Tucker, J. Am. Ceram. Soc., 59 (1976) 12.

    Google Scholar 

  26. S. Montserrat, P. Cortés, A. Pappin, K. H. Quah and J. M. Hutchinson, J. Non-Crystal. Solids, 172–174 (1994) 1017.

    Google Scholar 

  27. A. Hensel, J. Dobbertin, J. E. K. Schawe, A. Boller and C. Schick, J. Thermal Anal., 46 (1996) 935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montserrat, S. Measuring the Glass Transition of Thermosets by Alternating Differential Scanning Calorimetry. Journal of Thermal Analysis and Calorimetry 59, 289–303 (2000). https://doi.org/10.1023/A:1010160601663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010160601663

Navigation