Skip to main content
Log in

Thermokinetic Research Method for Bacterial Growth in Conduction Calorimeter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the basic equations of thermokinetics and the thermoanalytical curve equation for bacterial growth in conduction calorimeter on the basis of the basic theory of thermokinetics. The bacterial growths in the log phase for Vibro metschnikovii and Bacillus subtilis at different temperatures were calorimetrically investigated. The rate constant of bacterial growth, the cooling constant of the thermokinetic system, the generation time and the pre-exponential factor at different temperature were obtained, which allowed to evaluate the activation energy of bacterial growth (E a). According to the transition-state theory of chemical kinetics, the activation enthalpy (ΔS ), the activation Gibbs free energy (ΔG ) and equilibrium constant (K ) of the activated state at different temperatures were also obtained. The above results showed that the research method suggested in this paper was reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang-Li Xie, Hou-Kuan Tang, Zhao-Hua and Song-Sheng Qu, Thermochim. Acta, 123 (1988) 33.

    Article  Google Scholar 

  2. Hong-Lin Zhang, Hai-Tao Sun, Yong-Jun Liu, Qing-Zhu Shan and Xiu-Feng Sun, Thermochim. Acta, 223 (1993) 29.

    Article  CAS  Google Scholar 

  3. P. Monk and I. Wadsö, Acta Chem. Scandinavic, 22 (1968) 1842.

    Article  CAS  Google Scholar 

  4. L. Nunez Regueira, I. Gomez Orellane, N. Barros Pena, R. Chamy and J. M. Lema, Thermochim. Acta, 172 (1990) 163.

    Article  CAS  Google Scholar 

  5. P. Weppen, J. Ebens, B. G. Muller and D. Schuller, Thermochim. Acta, 193 (1991) 135.

    Article  CAS  Google Scholar 

  6. P. Backman, Thermochim. Acta, 172 (1990) 123.

    Article  Google Scholar 

  7. E. H. Battley, Thermochim. Acta, 309 (1998) 17.

    Article  CAS  Google Scholar 

  8. L. Marisonk, J. S. Liu, S. Ampuero, U. Von Stockar and B. Schenker, Thermochim. Acta, 309 (1998) 157.

    Article  Google Scholar 

  9. E. Calvet and H. Prat, Recent Progress in Microcalorimetry, Pergamon Press, Oxfod 1963.

    Google Scholar 

  10. Yu Deng, Chem. J. Chinese Univ., 6 (1985) 621.

    CAS  Google Scholar 

  11. Xian-Cheng Zeng, Xiang-Guang Meng, Yuan-Qin Zhang and Min-Zu Chen, Chem. J. Chinese Univ., 18 (1997) 581.

    CAS  Google Scholar 

  12. Yong-Jun Liu, Yang-Jun Ding, Zhao-Dong Nan, Hai-Tao Sun and Hong-Lin Zhang, J. Thermal Anal., 50 (1997) 897.

    Article  CAS  Google Scholar 

  13. W. J. Moore, Physical Chemistry, Longman Group Limited, London, 5th ed., 1972, p. 385.

    Google Scholar 

  14. I. Wadsö, Thermochim. Acta, 294 (1997) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nan, ZD., Xiang, Y., Cheng, SQ. et al. Thermokinetic Research Method for Bacterial Growth in Conduction Calorimeter. Journal of Thermal Analysis and Calorimetry 63, 423–431 (2000). https://doi.org/10.1023/A:1010144510128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010144510128

Navigation