Skip to main content
Log in

Isothermal calorimetry and microbial growth: beyond modeling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A phenomenological approach, based on the simple consideration of the cell duplication mechanism, is suggested to describe the microbial growth monitored through isothermal calorimetry. Correlation of the calorimetric trace with the cell microbial population can be assessed. The method permits to obtain directly the generation time trend τ(t) in all the phases of the growth process discriminating the influence of the peculiar experimental setup and focusing on the factors that are intrinsic to the microorganism. This type of elaboration offers a reference point in order to compare results from different laboratories for similar systems and for further kinetic and energetic exploitation of the microbial system. The paper reports the case of Lactobacillus helveticus as an experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8. doi:10.1111/j.1574-6968.2009.01819.x.

    Article  CAS  Google Scholar 

  2. Itoh S, Takahashi K. Calorimetric studies of microbial growth: kinetic analysis of growth thermograms observed for bakery yeast at various temperatures. Agric Biol Chem. 1984;48:271–5. doi:10.1080/00021369.1984.10866155.

    CAS  Google Scholar 

  3. Beezer AE, Ashby LJ, De Morais SM, Bolton R, Shafiq M, Kjeldsen N. Drug bioassay, synergic interactions in drug combinations, thermodynamics and biologically based structure-activity relationships. A synthesis. Thermochim Acta. 1990;172:81–6.

    Article  CAS  Google Scholar 

  4. Schiraldi A. Microbial growth and metabolism: modeling and calorimetric characterization. Pure Appl Chem. 1995;67:1873–8.

    Article  CAS  Google Scholar 

  5. Fleming RMT, Thiele I, Provan G, Nasheuer HP. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. J Theor Biol. 2010;264:683–92.

    Article  CAS  Google Scholar 

  6. Braissant O, Bonkata B, Wirzb B, Bachmann A. Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta. 2013;555:64–71.

    Article  CAS  Google Scholar 

  7. Baranyi J, Roberts TA, McClure P. A non-autonomous differential equation to model bacterial growth. Food Microbiol. 1993;10:43–59.

    Article  Google Scholar 

  8. Aragao GMF, Corradini MG, Normand MD, Peleg M. Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non-isothermal conditions. Int J Food Microbiol. 2007;119:243–57.

    Article  CAS  Google Scholar 

  9. Vadasz P, Vadasz AS. Biological implications from an autonomous version of Baranyi and Roberts growth model. Int J Microbiol. 2007;114:357–65.

    Article  Google Scholar 

  10. Baranyi J, Roberts TA. A dynamic approach to predicting bacterial-growth in food. Int J Food Microbiol. 1994;23:277–94.

    Article  CAS  Google Scholar 

  11. Baranyi J, Pin C, Ross T. Validating and comparing predictive models. Int J Food Microbiol. 1999;48:159–66.

    Article  CAS  Google Scholar 

  12. Buchanan RL, Whiting RC, Damert WC. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 1997;14:313–26.

    Article  Google Scholar 

  13. Huang L. IPMP 2013: a comprehensive data analysis tool for predictive microbiology. Int J Food Microbiol. 2014;171:100–7.

    Article  Google Scholar 

  14. Lopez S, Prieto M, Dijkstra J, Dhanoad MS, France J. Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol. 2004;96:289–300.

    Article  CAS  Google Scholar 

  15. Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH, Van Impe JF. Predictive modelling of the microbial lag phase: a review. Int J Food Microbiol. 2004;94:137–59.

    Article  CAS  Google Scholar 

  16. Schiraldi A, Fessas D. Classical and Knudsen thermogravimetry to check states and displacements of water in food systems. J Therm Anal Calorim. 2003;71:225–35.

    Article  CAS  Google Scholar 

  17. Riva M, Fessas D, Franzetti L, Schiraldi A. Calorimetric characterization of different yeast strains in doughs. J Therm Anal. 1998;52:753–64.

    Article  CAS  Google Scholar 

  18. Schaffer B, Keller B, Lorinczy D. Application of isotherm calorimetry in the development of foods containing probiotic live flora and enriched with bioavailable Ca2+. J Therm Anal Calorim. 2009;95:703–8.

    Article  Google Scholar 

  19. Arioli S, Ragg E, Scaglioni L, Fessas D, Signorelli M, Karp M, Daffonchio D, De Noni I, Mulas M, Oggioni M, Guglielmetti S, Mora D. Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms. PLoS ONE. 2010;5(11):e15520. doi:10.1371/journal.pone.0015520.

    Article  CAS  Google Scholar 

  20. Gardikis K, Signorelli M, Ferrario C, Schiraldi A, Fortina MG, Hatziantoniou S, Demetzos C, Fessas D. Microbial biosensors to monitor the encapsulation effectiveness of Doxorubicin in chimeric advanced drug Delivery Nano Systems: a calorimetric approach. Int J Pharm. 2017;516:178–84. doi:10.1016/j.ijpharm.2016.11.033 (Epub 2016 Nov 11).

    Article  CAS  Google Scholar 

  21. Slattery L, O’Callaghan J, Fitzgerald GF, Beresford T, Ross RP. Invited review: Lactobacillus helveticus a thermophilic dairy starter related to gut bacteria. J Dairy Sci. 2010;93:4435–54. doi:10.3168/jds.2010-3327.

    Article  CAS  Google Scholar 

  22. Giraffa G. Lactobacillus helveticus: importance in food and health. Front Microbiol. 2014;5:338. doi:10.3389/fmicb.2014.00338.

    Article  Google Scholar 

  23. De Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Bacteriol. 1960;23:130–5. doi:10.1111/j.1365-2672.1960.tb00188.x.

    Article  Google Scholar 

  24. Lamprecht I. Calorimetry and thermodynamics of living systems. Thermochim Acta. 2003;405:1–13.

    Article  CAS  Google Scholar 

  25. Burkhard AH, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU. Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol. 2007;5:231–9.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Maria Grazia Fortina, DeFENS University of Milan, for kindly supplying the L. helveticus cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Fessas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fessas, D., Schiraldi, A. Isothermal calorimetry and microbial growth: beyond modeling. J Therm Anal Calorim 130, 567–572 (2017). https://doi.org/10.1007/s10973-017-6515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6515-x

Keywords

Navigation