Skip to main content
Log in

Comonomer Distribution in Polyethylenes Analysed by DSC After Thermal Fractionation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ethylene copolymers exhibit a broad range of comonomer distributions. Thermal fractionation was performed on different grades of copolymers in a differential scanning calorimeter (DSC). Subsequent melting scans of fractionated polyethylenes provided a series of endothermic peaks each corresponding to a particular branch density. The DSC melting peak temperature and the area under each fraction were used to determine the branch density for each melting peak in the thermal fractionated polyethylenes. High-density polyethylene (HDPE) showed no branches whereas linear low-density polyethylenes (LLDPE) exhibited a broad range of comonomer distributions. The distributions depended on the catalyst and comonomer type and whether the polymerisation was performed in the liquid or gas phase. The DSC curves contrast the very broad range of branching in Ziegler—Natta polymers, particularly those formed in the liquid phase, with those formed by single-site catalysts. The metallocene or single-site catalysed polymers showed, as expected, a narrower distribution of branching, but broader than sometimes described. The ultra low-density polyethylenes (ULDPE) can be regarded as partially melted at room temperature thus fractionation of ULDPE should continue to sub-ambient temperatures. The thermal fractionation is shown to be useful for determining the crystallisation behaviour of polyethylene blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Prasad, Polym. Eng. & Sci., 38 (1998) 1716.

    Google Scholar 

  2. V. B. F. Mathot, Calorimetry and Thermal Analysis of Polymers, Hanser: New York 1993, Chapter 9, p. 232.

    Google Scholar 

  3. V. B. F. Mathot, R. L. Scherrenberg and T. F. J. Pijpers, Polymer, 39 (1998) 4541.

    Google Scholar 

  4. F. M. Mirabella, S. P. Westphal, P. L. Fernando, E. A. Ford and J. G. Williams, J. Polym. Sci., Polym. Phys. Ed., 26B (1988) 1995.

    Google Scholar 

  5. R. A. C. Debilieck and M. B. F. Mathot, J. Mat. Sci. Lett., 7 (1988) 1276.

    Google Scholar 

  6. M. J. Hill and P. J. Barham, Polymer, 35 (1994) 1802. b) R. Morgan, M. J. Hill, P. J. Barham and C. Frye, Polymer, 38 (1997) 1903.

    Google Scholar 

  7. I. G. Voight-Martin, R. G. Alamo and L. Mandelkern, J. Polym. Sci., Polym. Phys. Ed., 24 (1986) 1283.

    Google Scholar 

  8. L. Wild, Adv. Polym. Sci., 98 (1991) 1 and references therein.

    Google Scholar 

  9. S. Hosoda, Polym. J., 20 (1988) 383.

    Google Scholar 

  10. C. J. Neves, E. Monteiro and A. C. Habert, J. Appl. Polym. Sci., 50 (1995) 817.

    Google Scholar 

  11. F. Defoor, G. Groeninckx, H. Reynaers, P. Schouterden and B. Van der Heijden, J. Appl. Polym. Sci., 47 (1993) 1839.

    Google Scholar 

  12. A. Barbalata, T. Bohossian and G. Delmas, J. Appl. Polym. Sci., 46 (1992) 411.

    Google Scholar 

  13. E. Karbashewski, L. Kale, A. Rudin, W. J. Tchir, D. G. Cook and J. O. Pronovost, J. Appl. Polym. Sci., 44 (1992) 425.

    Google Scholar 

  14. P. L. Joskowicz, A. Muñoz, J. Barrera and A. Müller, Macromol. Chem. Phys., 196 (1995) 385.

    Google Scholar 

  15. X. Zhou and J. N. Hay, Eur. Polym. J., 29 (1993) 291.

    Google Scholar 

  16. E. T. Hsieh, C. C. Tso, J. D. Byers, T. W. Johnson, Q. Fu and S. Z. D. Cheng, J. Macromol. Sci.-Phys., B36 (1997) 615.

    Google Scholar 

  17. Y. Feng and X. Jin, Polym. Plast. Tech. Eng., 37 (1998) 271.

    Google Scholar 

  18. V. B. F. Mathot, Calorimetry and Thermal Analysis of Polymers, Hanser: New York 1993, Chapter 9, p. 286.

    Google Scholar 

  19. E. Adisson, M. Ribeiro, A. Deffieux and M. Fontanille, Polymer, 33 (1992) 4337.

    Google Scholar 

  20. M. Zhang, J. Huang, D. Lynch and S. E. Wanke, ANTEC Proceed., (1998) 539.

  21. M. Y. Keating and E. F. McCord, Thermochim. Acta, 243 (1994) 129.

    Google Scholar 

  22. F. C. Chiu, M. Y. Keating and S. Z. D. Cheng, ANTEC Proceed., (1995) 1503.

  23. M. Y. Keating, I.-H. Lee and C. S. Wong, Thermochim. Acta, 284 (1996) 47.

    Google Scholar 

  24. Q. Fu, F. C. Chiu, K. W. McCreight, M. Guo, W. W. Tseng, S. Z. D. Cheng, M. Y. Keating, E. T. Heish and P. DesLauriers, J. Macromol. Sci., Phys., B36 (1997) 41.

    Google Scholar 

  25. G. Balbontin, L. Camurati, T. Dall'Occo, A. Finotti, R. Franzese and G. Vecellio, Angew. Makromol. Chemie, 219 (1994) 139.

    Google Scholar 

  26. G. Balbontin, L. Camurati, T. Dall'Occo and R. Zeigler, J. Mol. Catalyst A: Chemical, 98 (1995) 123.

    Google Scholar 

  27. T. Kamiya, N. Ishikawa, S. Kambe, N. Ikegami, H. Nishibu and T. Hattori, ANTEC Proceed., (1990) 871.

  28. R. A. Shanks and K. M. Drummond, ANTEC Proceed., (1998) 2004.

  29. P. Starck, Polym. Intern., 40 (1996) 111.

    Google Scholar 

  30. B. Wolf, S. Kenig, J. Klopstock and J. Miltz, J. Appl. Polym. Sci., 62 (1996) 1339.

    Google Scholar 

  31. J. Varga, J. Menczel and A. Solti, J. Thermal Anal., 17 (1979) 333.

    Google Scholar 

  32. A. J. Müller, Z. H. Heránndez, M. L. Arnal and J. J. Sánchez, Polym. Bull., 39 (1997) 465.

    Google Scholar 

  33. M. L. Arnal, Z. H. Heránndez, M. Matos, J. J. Sánchez, G. Méndez, A. Sánchez and A. J. Müller, ANTEC Proceed., (1998) 611.

  34. J. J. Mara and K. P. Menard, Acta Polymerica, 45 (1994) 387.

    Google Scholar 

  35. P. Schouterden, G. Groenicks, B. Van des Heijden and F. Jansen, Polymer, 28 (1987) 2099.

    Google Scholar 

  36. D. Parikh, B. S. Childress and G. W. Knight, ANTEC Proceed., (1990) 1543.

  37. B. Monrabal, J. Appl. Polym. Sci., 52 (1994) 491.

    Google Scholar 

  38. S. A. Karoglanian and I. R. Harrison, Thermochim. Acta, 212 (1992) 143.

    Google Scholar 

  39. R. A. Shanks and G. Amarasinghe, unpublished results.

  40. L. Woo, S. P. Westphal, T. K. Ling and A. R. Khare, Polym. Preprints, 39 (1998) 203.

    Google Scholar 

  41. J. N. Hay and X. Zhou, Polymer, 34 (1993) 1002.

    Google Scholar 

  42. M. J. Hill, R. Morgan and P. J. Barham, Polymer, 38 (1997) 3003.

    Google Scholar 

  43. K. W. Swogger, G. M. Lancaster, S. Y. Lai and T. I. Butler, J. Plastic Film and Sheeting, 11 (1995) 102.

    Google Scholar 

  44. T. I. Butler, S. Y. Lai and R. Patel, J. Plastic Film and Sheeting, 10 (1994) 102.

    Google Scholar 

  45. H. Zhou and G. L. Wilkes, Polymer, 38 (1997) 5735.

    Google Scholar 

  46. R. A. Shanks and G. Amarasinghe, Polymer, in press.

  47. A. J. Müller, M. L. Arnal, G. Méndez and J. J. Sánchez, IUPAC 37th International Symposium on Macromolecules, Gold Coast, Australia, 12–17 July (1998) 85.

  48. M. L. Arnal, J. J. Sánchez and A. J. Müller, ANTEC Proceed., (1999) 2329.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Shanks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanks, R.A., Amarasinghe, G. Comonomer Distribution in Polyethylenes Analysed by DSC After Thermal Fractionation. Journal of Thermal Analysis and Calorimetry 59, 471–482 (2000). https://doi.org/10.1023/A:1010141508932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010141508932

Navigation