Skip to main content
Log in

A Comparison of Bit-Parallel and Bit-Serial Architectures for WDM Networks

  • Published:
Photonic Network Communication Aims and scope Submit manuscript

Abstract

Wavelength division multiplexing (WDM) is emerging as a viable solution to reduce the electronic processing bottleneck in very high-speed optical networks. A set of parallel and independent channels are created on a single fiber using this technique. Parallel communication utilizing the WDM channels may be accomplished in two ways: (i) bit serial, where each source-destination pair communicates using one wavelength and data are sent serially on this wavelength; and (ii) bit parallel, where each source-destination pair communicates using a subset of channels and data are sent in multiple-bit words. Three architectures are studied in the paper: single-hop bit-serial star, single-hop bit-parallel star, and multi-hop bit-parallel shufflenet. The objective of this paper is to evaluate these architectures with respect to average packet delay, network utilization, and link throughput. It is shown that the Shufflenet offers the lowest latency but suffers from high cost and low link throughput. The star topology with bit-parallel access offers lower latency than the bit-serial star, but is more expensive to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Green, Optical networking update, IEEE Journal on Selected Areas in Communications, vol. 14, no.5, (June 1996), pp. 764–779.

    Google Scholar 

  2. C. A. Brackett, Dense wavelength division multiplexing networks: Principles and applications, IEEE Journal on Selected Areas in Communications, vol. 8, no.6, (Aug. 1990), pp. 948–964.

    Google Scholar 

  3. I. P. Kaminow, et al., A wideband all-optical WDM network, IEEE Journal on Selected Areas in Communications, vol. 14, no.5, (June 1996), pp. 780–799.

    Google Scholar 

  4. T.-K. Chiang, et al., Implementation of STARNET: a WDM computer communications network, IEEE Journal on Selected Areas in Communications, vol. 14, no.5, (June 1996), pp. 824–839.

    Google Scholar 

  5. E. Hall, et al., The Rainbow-II Gigabit optical network, IEEE Journal on Selected Areas in Communications, vol. 14, no.5, (June 1996), pp. 814–823.

    Google Scholar 

  6. J. Feehrer, J. Sauer, L. Ramfelt, Design and implementation of a prototype optical deflection network, Proc. of ACM SIGCOMM, (London, UK, Aug. 1994), pp. 191–200.

  7. P. Dowd, et al., Lightning network and systems architecture, Journal of Lightwave Technology, Vol. 14, no.6, (June 1996), pp. 1371–1387.

    Google Scholar 

  8. K. M. Sivalingam, P. W. Dowd, A multi-level WDM access protocol for an optically interconnected multiprocessor system, Journal of Lightwave Technology, vol. 13, no.11, (Nov. 1995), pp. 2152–2167.

    Google Scholar 

  9. K. M. Sivalingam, P. W. Dowd, A lightweight media access protocol for WDM-based distributed shared memory system, Proc. of IEEE INFOCOM' 96, (San Francisco, CA, March 1996), vol. 2, pp. 946–953.

    Google Scholar 

  10. N. F. Maxemchuk, Comparison of deflection and store-and-forward techniques in the Manhattan street and shufle-exchange networks, Proc. of IEEE INFOCOM' 89, (Ottawa, Canada, April 1989), vol. 3, pp. 800–809.

    Google Scholar 

  11. A. C. Acampora, S. I. A. Shah, Multihop lightwave networks: A comparison of store-and-forward and hot-potato routing, IEEE Transactions on Communications, vol. 40, no.5, (June 1992), pp. 1082–1090.

    Google Scholar 

  12. D. J. Blumenthal, K. Y. Chen, J. Ma, R. F. Feuerstein, J. R. Sauer, Demonstration of a deflection routing 2 × 2 photonic switch for computer interconnects, IEEE Photonic Technology Letters, vol. 4, no.2, (Feb. 1992), pp. 169–173.

    Google Scholar 

  13. L. G. Kazovsky, T. Fong, T. Hofmeister, Optical local area network topologies, IEEE Communications Magazine, vol. 32, no.12, (Dec. 1994), pp. 50–54.

    Google Scholar 

  14. M. M. Nassehi, F. A. Tobagi, M. E. Marhic, Fiber optic configurations for local area networks, IEEE Journal on Selected Areas in Communications, vol. 3, No.6, (Nov. 1985), pp. 941–949.

    Google Scholar 

  15. P. E. Green, Toward customer useable all-optical networks, IEEE Communications Magazine, vol. 32, no,12, (Dec. 1994), pp. 44–49.

    Google Scholar 

  16. B. Mukherjee, Architectures and protocols for WDM-based local lightwave networks. Part 1: Single-hop systems, IEEE Networks, vol. 6, no.3, (May 1992), pp. 12–27.

    Google Scholar 

  17. D. Levine, I. Akyildiz, PROTON: A Media Access Control protocol for optical networks with star topology, IEEE/ACM Transactions on Networking, vol. 3, no.2, (April 1995), pp. 158–168.

    Google Scholar 

  18. S. S. Lam, Satellite packet communications-multiple access protocols and performance, IEEE Transactions on Communications, vol. 27, no.10, (Oct. 1979), pp. 1456–1466.

    Google Scholar 

  19. A. V. Ramanan, Ultrafast Space-Time Networks for Multiprocessors, (Ph.D. thesis, University of Colorado Boulder, CO, Department of Electrical and Computer Engineering, 1993).

    Google Scholar 

  20. A. S. Acampora, M. J. Karol, M. G. Hluchyj, Multihop lightwave networks: A new approach to achieve terabit capabilities, Proc. of IEEE ICC' 88, (Philadelphia, PA, June 1988), vol. 1, pp. 1478–1484.

    Google Scholar 

  21. S. Tridandapani, B. Mukherjee, Channel sharing in multi-hop WDM networks: Realization and performance of multicast traffic, IEEE Journal on Selected Areas in Communications, vol. 15, no.4, (April 1997), pp. 488–500.

    Google Scholar 

  22. J. Mogul, Observing TCP dynamics in real networks, Proc. of ACM SIGCOMM, (Baltimore, MD, Aug. 1992), pp. 305–317.

  23. K. Claffy, G. Polyzos, H. Braun, Traffic characteristics of the T1 NSFNET backbone, Proc. of IEEE INFOCOM' 93 (San Francisco, CA, March 1993), vol. 2, pp. 885–892.

    Google Scholar 

  24. J. P. Singh, W. D. Weber, A. Gupta, Splash: Stanford parallel applications for shared memory, Tech. Rep. CSL-TR-91–469 (Stanford University, 1991).

  25. D. Chaiken, C. Fields, K. Kurihara, A. Agarwal, Directory-based cache coherence in large-scale multiprocessors, IEEE Computer, vol. 23, no.6, (June 1990), pp. 49–58.

    Google Scholar 

  26. I. Jacobs, R. Binder, E. Hoverstein, General purpose packet satellite networks, Proceedings of IEEE, vol. 66, no.11, (Nov. 1978), pp. 1448–1468.

    Google Scholar 

  27. M. J. Karol, S. Shaikh, A simple adaptive routing scheme for congestion control in ShuffleNet multihop lightwave networks, IEEE Journal on Selected Areas in Communications, vol. 9, no.7, (Sept. 1991), pp. 1040–1051.

    Google Scholar 

  28. J. R. Jump, YACSIM Reference Manual (Rice University, Department of Electrical and Computer Engineering, 1.2 ed., August 1992).

  29. A. M. Law, W. D. Kelton, Simulation Modeling and Analysis (McGraw Hill, 1991).

  30. J. S. Vitter, P. Flajolet, Analysis of algorithms and data structures, in Handbook of Theoretical Computer Science (J. van Leeuwen, ed.), vol. A: Algorithms and Complexity, North Holland, (1990), chapter 9, pp. 431–524.

  31. A. V. Ramanan, H. Jordan, J. Sauer, D. Blumental, An extended fiber-optic backplane for multiprocessors, Proc. of Twenty-Seventh Hawaii International Conference on System Sciences (Maui, HI, Jan. 1994), pp. 462–470.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivalingam, K.M. A Comparison of Bit-Parallel and Bit-Serial Architectures for WDM Networks. Photonic Network Communications 1, 89–103 (1999). https://doi.org/10.1023/A:1010085218150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010085218150

Navigation