Skip to main content

The Evolution of Optical Transport Networks

  • Chapter
Springer Handbook of Optical Networks

Part of the book series: Springer Handbooks ((SHB))

  • 3308 Accesses

Zusammenfassung

This introductory chapter describes the role of optics in networks, their capabilities, and their scaling limitations (different multiplexing techniques, i. e., (time-division multiplexing), (code-division multiplexing), (frequency-division multiplexing), (space-division multiplexing)). Types of optical networks installed around the globe are summarized, as well as their impact on society, market structure, and future perspectives.

Optical fiber transmission links were first deployed in the mid 1970s to provide \({\mathrm{45}}\,{\mathrm{Mb/s}}\) capacity in metropolitan networks at a time when most traffic was wireline telephone communication. Few would have imagined then, when bandwidth demand on the telephone network was growing only as rapidly as population growth, that this new technology would radically alter business and everyday life by enabling the worldwide Internet. As the Internet grew in popularity and extended to all parts of the world, new devices and transmission technologies were invented and developed to cost-effectively achieve the required higher capacity transmission, and fiber was laid across continents and under the oceans to cover the globe. Thus began a virtuous cycle of higher capacity optical transmission systems and, ultimately, reconfigurable optical networks enabled by new technologies to meet increased demand, which resulted in new applications and services, such as video, which drove ever greater capacity and flexibility demand, which was, again, achieved via new technology innovation at significantly lower costs/capacity.

First-era systems grew the capacity of optical links by increasing the bit rate of information carried on the fiber. The second era, which was achieved cost-effectively by the optical fiber amplifier, increased capacity by multiplexing many wavelengths, each carrying independent information, onto a single fiber. The result was an increase in single fiber transmission equal to the number of wavelength channels and long spans over which all the wavelength channel signals could be periodically boosted with a single optically-powered optical fiber amplifier. The next era took the giant step of moving optics from transmission links only to fully reconfigurable, wavelength-channel-based networks to achieve higher efficiency (and, therefore, capacity), flexibility, and restorability by allotting and managing network capacity at the optical layer level.

This step required cost-effective optical switching components to provide the reconfigurable wavelength add/drop and cross connect functions. Today’s optical networks provide superhighways of information bandwidth of the order 100 wavelength-defined lanes each providing hundreds of \(\mathrm{Gb/s}\) information capacity. These networks provide network optimization to address changing capacity needs under software control via configurable wavelength on-and-off ramps and route switching centers. Without these optical networks, the global internet, cloud computing, and high bandwidth mobile services, including video, would not be possible. This chapter provides a view of the evolution of these optical networks—the market drivers, network architectures, transmission system innovations and enabling devices, and module technologies—which was a result of the efforts of a global community of researchers, developers, and, ultimately, manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.J. Winzer, D. Nielsen: From scaling disparities to integrated parallelism, J. Lightwave Technol. 35(5), 1099–1115 (2017)

    Article  Google Scholar 

  • R.C. Alferness: The evolution of configurable wavelength multiplexed optical networks: a historical perspective, Proc. IEEE 100(5), 1023–1034 (2012)

    Article  Google Scholar 

  • I. Jacobs: Lightwave systems development: looking back and ahead, Opt. Photonics News 6(2), 19–23 (1995)

    Article  Google Scholar 

  • P.J. Winzer, D.T. Nielsen, A.R. Chraplyvy: Fiber-optic transmission and networking: the previous 20 years and the next 20 years, Opt. Express 26(18), 24190–24239 (2018)

    Article  Google Scholar 

  • S.K. Korotky, G. Eisenstein, R.C. Alferness, J. Veselka, L.L. Buhl, G.T. Harvey, P.H. Read: Fully connectorized high-speed Ti:LiNbO3 switch/modulator for time-division multiplexing and data encoding, J. Lightwave Technol. (1985), https://doi.org/10.1109/JLT.1985.1074169

    Article  Google Scholar 

  • S.K. Korotky, G. Eisenstein, A. Gnauck, B. Kasper, J. Veselka, R. Alferness, L. Buhl, C. Burrus, T. Huo, L. Stulz, K. Nelson, L. Cohen, R. Dawson, J. Campbell: 4-Gb/s transmission over 117 km of optical fiber using a Ti:LiN60z external modulator, J. Lightwave Technol. 3(5), 1027–1031 (1985)

    Article  Google Scholar 

  • J.C. Campbell, A.G. Dentai, W.S. Holden, B.L. Kasper: High-performance avalanche photodiode with separate absorption, “grading”, and multiplication regions, Electron. Lett. 19(20), 818–820 (1983)

    Article  Google Scholar 

  • E. Desurvire, J.R. Simpson, P.C. Becker: High-gain erbium-doped traveling wave, Opt. Lett. 12(11), 888–890 (1987)

    Article  Google Scholar 

  • A.R. Chraplyvy, R.W. Trach, K.L. Walker: Optical fiber for wavelength division multiplexing, U.S. Patent 5327516 (1994)

    Google Scholar 

  • L.A. Coldren: Multi-section tunable laser with differing multi-element mirrors, U.S. Patent 4896325 (1990), filed 1988

    Google Scholar 

  • V. Jayaraman, Z.M. Chuang, L.A. Coldren: Theory, design and performance of extended tuning range semiconductor lasers with sampled gratings, IEEE J. Quantum Electron. 29(6), 1824–1834 (1993)

    Article  Google Scholar 

  • E.J. Murphy, T.O. Murphy, A.F. Andrews, R.W. Irvin, B.H. Lee, P. Peng, G.W. Richards, A. Yorkinks: 16\(\times\)16 strictly non-blocking guided wave optical switching systems, J. Lightwave Syst. Tech. 14, 352–358 (1996)

    Article  Google Scholar 

  • R.C. Alferness: Guided wave devices for optical communications, IEEE J. Quantum Electron. 17(6), 946–959 (1981)

    Article  Google Scholar 

  • R.C. Alferness, R.V. Schmidt: Tunable optical waveguide directional coupler filter, Appl. Phys. Lett. 33(2), 161–163 (1978)

    Article  Google Scholar 

  • S.B. Alexander, R.S. Bondurant, D. Byrne, V.W.S. Chan, S.G. Finn, R. Gallager, B.S. Glance, H.A. Haus, P. Humblet, R. Jain, I.P. Kaminow, M. Karol, R.S. Kennedy, A. Kirby, H.Q. Le, A.A.M. Saleh, B.A. Schofield, J.H. Shapiro, N.K. Shankaranarayanan, R.E. Thomas, R.C. Williamson, R.W. Wilson: A precompetitive consortium on wide-band all optical networks, J. Lightwave Technol. 11(5), 714–735 (1993)

    Article  Google Scholar 

  • R.E. Wagner, R.C. Alferness, A.A.M. Saleh, M.S. Goodman: MONET: Multiwavelength optical networking, J. Lightwave Technol. 14(6), 1349–1355 (1996)

    Article  Google Scholar 

  • R.C. Alferness, J.E. Bethold, D. Pomey, R.W. Tkach: MONET: New Jersey demonstration network results. In: Opt. Fiber Conf., February 16, Dallas (1997), paper WI1

    Google Scholar 

  • W.T. Anderson, J. Jackel, G.-K. Chang, H. Dai, W. Xin, M. Goodman, C. Allyn, M. Alvarez, O. Clarke, A. Gottlieb, F. Kleytman, J. Morreale, V. Nichols, A. Tzathas, R. Vora, L. Mercer, H. Dardy, E. Renaud, L. Williard, J. Perreault, R. McFarland, T. Gibbons: The MONET Project – a final report, J. Lightwave Technol. 18(12), 1988–2009 (2000)

    Article  Google Scholar 

  • D.M. Marom, D.T. Neilson, D.S. Greywall, N.R. Basavanhally, P.R. Kolodner, Y.L. Low, F. Pardo, C.A. Bolle, S. Chandrasekhar, L. Buhl, C.R. Giles, S.-H. Oh, C.S. Pai, K. Werder, H.T. Soh, G.R. Bogart, E. Ferry, F.P. Klemens, K. Teffeau, J.F. Miner, S. Rogers, J.E. Bower, R.C. Keller, W. Mansfield: Wavelength selective 1x4 switch for 128 WDM channels at 50 GHz spacing. In: Proc. Optical Fiber Comm. Conf. (OFC) (2002) p. 857

    Google Scholar 

  • B. Collings: New devices enabling software – defined optical networks, IEEE Commun. Mag. 51(3), 66–71 (2013)

    Article  Google Scholar 

  • P.J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A.H. Gnauck, D.A. Fishman, C.R. Doerr, S. Chandrasekhar, L.L. Buhl, T.J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, Y. Painchaud: 100-Gb/s DQPSK transmission: from laboratory experiments to field trials, J. Lightwave Technol. 26, 3388–3402 (2008)

    Article  Google Scholar 

  • P.J. Winzer: Optical networking beyond WDM, IEEE Photonics J. 4(2), 647–650 (2012)

    Article  Google Scholar 

  • D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki: 10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L Band. In: Proc. Eur. Conf. Opt. Comm. (ECOC) (2017), Th.PDP.A1

    Google Scholar 

  • S. Randel, R. Ryf, A. Sierra, P.J. Winzer, A.H. Gnauck, C.A. Bolle, R.-J. Essiambre, D.W. Peckham, A. McCurdy, R. Lingle Jr.: 6\(\times\)56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6\(\times\)6 MIMO equalization, Opt. Express 19(17), 16697–16707 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod C. Alferness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Alferness, R.C. (2020). The Evolution of Optical Transport Networks. In: Mukherjee, B., Tomkos, I., Tornatore, M., Winzer, P., Zhao, Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16250-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16249-8

  • Online ISBN: 978-3-030-16250-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics