Skip to main content
Log in

Percolation in Composites

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Many properties of composite materials such as diffusion, electrical conduction, dielectric response as well as elasticity, are intimately related to the geometrical arrangement of the constitutive phases, including the geometry of the respective interfaces. Percolation theory, whose objective is to characterize the connectivity properties in random geometries and to explore them with respect to physical processes, thus provides a natural frame for the theoretical description of random composites. This article explains basic concepts of static percolation theory and percolative transport, which subsequently are applied to specific experiments on heterogeneous ionic conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bunde and S. Havlin (eds.), Fractals and Disordered Systems 2nd ed. (Springer Verlag, Heidelberg, 1996).

    Google Scholar 

  2. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1992).

    Google Scholar 

  3. M. Sahimi, Application of Percolation Theory (Taylor & Francis, London, 1994).

    Google Scholar 

  4. U. Lauer and J. Maier, Ber. Bunsenges. Phys. Chem., 96, 111 (1992).

    Google Scholar 

  5. Z. Ball, H.M. Phillips, D.L. Callahan, and R. Sauerbrey, Phys. Rev. Lett., 73, 2099 (1994).

    Google Scholar 

  6. R.F. Voss, R.B. Laibowitz, and E.I. Allessandrini, Phys. Rev. Letters, 49, 1441 (1982).

    Google Scholar 

  7. S. Alexander and R.L. Orbach, J. Phys. Lett. (Paris), 43, L625 (1982).

    Google Scholar 

  8. S. Feng, B.I. Halperin, and P. Sen, Phys. Rev. B, 35, 197 (1987).

    Google Scholar 

  9. A.M. Dykne, Zh. Eksper. Theor. Fiz., 59, 111 (1970).

    Google Scholar 

  10. J.P. Straley, J. Phys. C, 9, 783 (1976); Phys. Rev. B, 15, 5733 (1977).

    Google Scholar 

  11. A.L. Efros and B.I. Shklovskii, Phys. Stat. Sol. B, 76, 475 (1976).

    Google Scholar 

  12. D. Stroud and D.J. Bergmann, Phys. Rev. B, 25, 2061 (1982).

    Google Scholar 

  13. J.P. Clerc, G. Giraud, J.M. Langier, and J.M. Luck, Advances in Physics, 39, 191 (1990).

    Google Scholar 

  14. S. Havlin and D. Ben-Avraham, Advances in Physics, 36, 695 (1987).

    Google Scholar 

  15. B. Derrida and J. Vannimenus, J. Phys. A: Math. Gen., 15, L557 (1982).

    Google Scholar 

  16. S. Kirkpatrick, Rev. Mod. Phys., 45, 574 (1973).

    Google Scholar 

  17. H. Boettger and V.V. Bryksin, Hopping Conduction in Solids (VCH, Weinheim, 1985), ch. 3.

    Google Scholar 

  18. C. Pecharromin and J.E. Iglesias, Phys. Rev. B, 49, 7137 (1994).

    Google Scholar 

  19. E.J. Garboczi, K.A. Snyder, J.F. Douglas, and M.F. Thorpe, Phys. Rev. E, 52, 819 (1995).

    Google Scholar 

  20. T.K. Ballabh, T.R. Middya, and A.N. Basu, J. Phys. D: Appl. Phys., 21, 567 (1988); ibid., 22, 1434 (1989).

    Google Scholar 

  21. K. Mussawisade, T. Wichmann, and K.W. Kehr, J. Phys.: Condens. Matter, 9, 1181 (1997).

    Google Scholar 

  22. P. Maass, B. Rinn, and W. Schirmacher, Phil. Mag. B, 79, 1915 (1999).

    Google Scholar 

  23. R.B. Stinchcombe and B.P. Watson, J. Phys. C, 9, 3221 (1976).

    Google Scholar 

  24. J. Bernasconi, Phys. Rev. B, 18, 2185 (1978).

    Google Scholar 

  25. D.J. Frank and C.J. Lobb, Phys. Rev., 37, 302 (1988).

    Google Scholar 

  26. C. C. Liang, J. Electrochem. Soc., 120, 1289 (1973).

    Google Scholar 

  27. For a review see A. K. Shukla and V. Sharma, in: Solid State Ionics: Materials and Applications eds. B.V.R. Chowdari, S. Chandra, S. Singh and P.C. Srivastava (World Scientific, Singapore, 1992) p. 91.

    Google Scholar 

  28. J. Maier in: Superionic Solids and Electrolytes ed. by A.L. Laskar and S. Chandra (Academic Press, New York, 1989) p. 137.

    Google Scholar 

  29. A. Bunde, W. Dieterich, and E. Roman, Phys. Rev. Lett., 55, 5 (1985).

    Google Scholar 

  30. H.E. Roman, A. Bunde, and W. Dieterich, Phys. Rev. B, 64, 35 (1986).

    Google Scholar 

  31. R. Blender and W. Dieterich, J. Phys. C, 20, 6113 (1987).

    Google Scholar 

  32. F.W. Poulsen, N. Hessel Andersen, B. Kinde, and J. Schoonman, Solid State Ionics, 9/10, 119 (1983).

    Google Scholar 

  33. Chen Li-Quang et al., Acta Phys. Sin., 34, 1027 (1984).

    Google Scholar 

  34. H.E. Roman and M. Yussouff, Phys. Rev. B, 36, 7285 (1987).

    Google Scholar 

  35. H.E. Roman, J. Phys.: Condens Matter, 2, 3909 (1990).

    Google Scholar 

  36. A.J. Bhattacharya, T. Dutta, S. Roy, S. Tarafdar, and T.R. Middya, in: Materials Science Forum 223-224, eds. D.K. Chaturvedi and G.E. Murch (Transtec Publications, Switzerland, 1996) p. 279.

    Google Scholar 

  37. G.M. Zhang, Phys. Rev. B, 53, 6256 (1996).

    Google Scholar 

  38. S. Indris, P. Heitjans, H.E. Roman, and A. Bunde, Phys. Rev. Lett., 84, 2889 (2000).

    Google Scholar 

  39. H. Gleiter, Progress in Material Science, 33, 223 (1989).

    Google Scholar 

  40. R.W. Siegel, Encyclopedia of Applied Physics, 11, 173 (1994).

    Google Scholar 

  41. J. Maier, Prog. Solid St. Chem., 23, 171 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunde, A., Dieterich, W. Percolation in Composites. Journal of Electroceramics 5, 81–92 (2000). https://doi.org/10.1023/A:1009997800513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009997800513

Navigation